• Title/Summary/Keyword: 7 dBi gain

Search Result 220, Processing Time 0.023 seconds

Design of Double-Dipole Quasi-Yagi Antenna with 7 dBi gain (7 dBi 이득을 가지는 이중 다이폴 준-야기 안테나 설계)

  • Yeo, Junho;Lee, Jong-Ig;Baek, Woon-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.2
    • /
    • pp.245-252
    • /
    • 2016
  • In this paper, the design of a double-dipole quasi-Yagi antenna (DDQYA) with a gain over 7 dBi at 1.70-2.70 GHz band is studied. The proposed DDQYA consists of two strip dipoles with different lengths and a ground reflector, which are connected trough a coplanar stripline. The length of the second dipole is adjusted to increase the gain in the low frequency band, whereas a rectangular patch director is appended to the DDQYA to enhance the gain in the middle and high frequency band. The effects of the length of the second dipole, and the length and width of the director on the antenna performance are analyzed, and final design parameters to obtain a gain over 7 dBi are obtained. A prototype of the proposed DDQYA is fabricated on an FR4 substrate, and the experimental results show that the antenna has a frequency band of 1.60-2.86 GHz for a VSWR < 2, and measured gain ranges 7.2-7.6 dBi at 1.70-2.70 GHz band.

Directivity Gain Improvement Method for UWB Coplanar Patch Antenna (UWB 평면 패치안테나의 지향성이득의 향상 방법)

  • Joo, Chang-Bok
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.6
    • /
    • pp.63-70
    • /
    • 2012
  • This paper discussed on the directive gain improvement method of the U-type ultra wide-band(UWB) planar patch antenna model with CPW feeding. For directive gain improvement, the U-type printed patch antenna model with CPW feeding is reconstructed as a microstrip structure by adding a reflection plane with aperture slot. The reflection coefficient of the reconstructed antenna is less than -6.5 dB(VSWR < 3.3) to the characteristic impedance of $50.08{\Omega}$ and showed the directive radiation patterns with the directive gain of 7.5 dBi ~ 10.1 dBi, the front-back ratio of 17.8 dB ~ 28.7 dB and the range of -3dB radiation angle over ${\pm}30^{\circ}$ to the main beam direction of ${\theta}=0^{\circ}$.

Design of Double Dipole Quasi-Yagi Antenna with enhanced bandwidth and gain (대역폭과 이득이 향상된 이중 다이폴 준-야기 안테나 설계)

  • Yeo, Junho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.252-258
    • /
    • 2017
  • In this paper, the bandwidth and gain enhancement of a double-dipole quasi-Yagi antenna (DDQYA) using a modified balun and two directors is studied. The proposed DDQYA consists of two strip dipoles with different lengths, a ground reflector, which are connected through a coplanar strip line, and two directors. The modified balun is used to increase the bandwidth, whereas two directors are appended to the DDQYA to enhance the gain in the middle and high frequency band. The effects of the length and width of the first director on the antenna performance are analyzed, and final design parameters to obtain a gain over 7 dBi at 1.60-2.90 GHz band are obtained. A prototype of the proposed DDQYA is fabricated on an FR4 substrate, and the experimental results show that the antenna has a frequency band of 1.57-3.00 GHz for a VSWR < 2, and measured gain ranges 7.1-7.8 dBi at 1.60-2.90 GHz band.

Design and Implementation of High Efficiency Slot Antenna for the Metal Notebook Dual Band WiFi MIMO System (메탈 노트북 Dual 밴드 WiFi MIMO용 고효율 슬롯안테나 설계 및 구현)

  • Yoo, Younghyeouk;Lee, Moonhee;Son, Taeho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1338-1343
    • /
    • 2018
  • MIMO(Multiple Input Multiple Output) slot antenna that operates on the dual WiFi band(2.401~2.495GHz, 5.18~5.825GHz), in this paper, was studied. The basic theory for the slot design is based on the coupling between adjacent slot, and slots are fed by the each microstrip lines. Two slot antennas for the MIMO operation are located on the left and the right side of top of the metal notebook, and grounds between a notebook and two microstrip feeding lines are connected. Measurement of return loss showed under -6dB on entire design band, and isolation was below than -30dB. Radiation efficiency, average gain and peak gain for the left and the right slot were measured in the anechoic chamber, and showed good performances as 57.25%, -2.42dBi, 5.64dBi and 55.35%, -2.61dBi, 6.42dBi for the 2.4GHz band and 55.89%, -2.58dBi, 7.3dBi and 53.79%, -2.8dBi, 7.54dBi for the 5GHz band.

WLAN Dual Band Dipole Antenna with Parasitic Elements and Reflector for High Gain Operation (기생 및 반사 소자를 갖는 고 이득 WLAN 이중 대역 다이폴 안테나)

  • Park, Sung-Il;Jung, Jin-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.2
    • /
    • pp.341-348
    • /
    • 2018
  • A WLAN dual band dipole antenna with parasitic elements and a reflector is presented for high gain operation. The parasitic elements are used for practical application and high gain operation of the radiation pattern at the WLAN dual band. The proposed antenna consists of three layers, and has dimensions of $74mm{\times}40 mm{\times}31.4mm$. From the experimental results, the achieved impedance bandwidths were 1035 MHz (2.031-3.066 GHz) and 1119 MHz (5.008-6.127 GHz), respectively. The measured maximum gain at each WLAN band was 6.69 dBi and 7.81 dBi, respectively.

Design and Implementation of 2.4 ㎓ and 5 ㎓ Dual Band Antenna for Access Point of Wireless LAN (무선 LAN 엑세스 포인트용 2.4 GHz, 5 GHz 이중공진 안테나의 설계 및 구현)

  • 김창일;오종대;양운근;김성민
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.3
    • /
    • pp.304-311
    • /
    • 2003
  • In this paper, we present the 2.4 ㎓ and 5 ㎓ dual band antenna fur access point of WLAN(Wireless Local Area Network). The proposed antenna must have equal gains in both frequency bands to accept two services. We proposed using collinear array to compensate gain difference for two different frequency bands. Simulation results using 3D simulation program, CST MWS(Microwave Studio), for dual band antenna with collinear away show that the maximum gain is about 4.7 dBi at 2.4 ㎓, 5.2 dBi at 5.7 ㎓. We got additional gain of about 2.1 ㏈ with collinear array for 2.4 ㎓ in measurement. Measured results for the dual band antenna with collinear array show applicable performances for access point of wireless LAN.

Gain Enhancement of Double Dipole Quasi-Yagi Antenna Using Meanderline Array Structure (미앤더라인 배열 구조를 이용한 이중 다이폴 준-야기 안테나의 이득 향상)

  • Junho Yeo;Jong-Ig Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.447-452
    • /
    • 2023
  • In this paper, gain enhancement of a double dipole quasi-Yagi antenna using a meanderline array structure was studied. A 4×1 meanderline array structure consisting of a meanderline conductor- shaped unit cell is located above the second dipole of the double dipole quasi-Yagi antenna. It was designed to have gain over 7 dBi in the frequency range between 1.70 and 2.70 GHz in order to compare the performance with the case using a conventional strip director. As a result of comparison, the average gain of the double dipole quasi-yagi antenna with the proposed meander line array structure was larger compared to the case with the conventional strip director. A double dipole quasi-Yagi antenna using the proposed meanderline array structure was fabricated on an FR4 substrate and its characteristics were compared with the simulation results. Experiment results show that the frequency band for a VSWR less than 2 was 1.55-2.82 GHz, and the frequency band for gain over 7 dBi was measured to be 1.54-2.83 GHz. The frequency bandwidth with gain over 7 dBi increased, and average gain also slightly increased, compared to the conventional case using a strip director.

Gain Enhancement of Series-fed Dipole Pair Antenna Using Director and Parasitic Patches (도파기와 기생 패치를 이용한 직렬-급전 다이폴 쌍 안테나의 이득 향상)

  • Yeo, Junho;Lee, Jong-Ig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.10
    • /
    • pp.1855-1861
    • /
    • 2017
  • In this paper, the gain enhancement of an SDPA using a director and two parasitic patches is studied. The modified balun is used to increase the bandwidth, whereas the director and two parasitic patches are appended to the SDPA to enhance the gain in the middle and high frequency bands. The effects of the distance between the director and parasitic patches on the antenna performance are analyzed, and the SDPA with a gain over 7 dBi at 1.54-2.99 GHz band is designed. The proposed SDPA is fabricated on an FR4 substrate with a dimension of $90mm(L){\times}135mm(W)$ in order to validate its performance. The fabricated antenna shows a frequency band of 1.56-3.10 GHz for a VSWR < 2, and it is confirmed by measurement that gain maintains over 7 dBi in the frequency range of 1.54-3.00 GHz.

Design of Series-fed Dipole Pair Antenna Using Multiple Directors (다중 도파기를 사용한 직렬 급전 다이폴 쌍 안테나 설계)

  • Yeo, Junho;Park, Jin-Taek;Lee, Jong-Ig
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.471-472
    • /
    • 2015
  • In this paper, a design method for enhancing the gain of a series-fed dipole pair (SDP) antenna using mutiple directors is studied. Strip-type directors are located above the second dipole of the SDP antenna, and the variations of the input VSWR bandwidth and gain depending on the length of the second dipole and the number of directors are analyzed. The antenna is optimized to obtain gain > 8 dBi in the frequency range of 1.7-2.7 GHz, which has three directors in the optimum design. The optimized antenna is designed on an FR4 substrate with a dimension of 86.2 mm by 152.3 mm, and it has frequency bands of 1.67-2.79 GHz for a VSWR < 2 and 1.69-2.72 GHz for a gain > 8 dBi.

  • PDF

Characteristics of a Microstrip Circularly-Polarized Aperture-Patch $8\times8$ Array Antenna (마이크로스트립 원형 편파 개구면-패치 $8\times8$ 배열 안테나의 특성)

  • 김인광;박위상
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.7
    • /
    • pp.1022-1032
    • /
    • 1999
  • The radiation characteristics of a microstrip circularly-polarized aperture-patch $8\times8$ array antenna are investigated at X-band. The radiator consists of a truncated square aperture on the ground plane with an inclined rectangular patch inside, and it is coupled by a microstrip line on the opposite side of the ground. The element spacing of the array was chosen as $0.8\lambda_0$so as to minimize the mutual coupling and maximize the gain. A corporate feed network was employed to distribute the power to each element through four Wilkinson and two T-junction dividers. Measurement results for the $8\times8$ array at 10 GHz showed a directivity of 26.3 dBi, a gain of 22.2 dBi, an axial ratio of 2.97 dB, and a side lobe level of -12.7dB. It was observed that when the array size increases, the directivity increases while the efficiency decreases.

  • PDF