• Title/Summary/Keyword: 7 Force Model

Search Result 522, Processing Time 0.03 seconds

A study on the computer simulation model of the closed moving system about the linear and nonlinear closed motion (폐쇄된 계에서 선형 및 비선형 닫힌 운동에 대한 컴퓨터 씨뮬레이션 모델에 관한 연구)

  • Chung Byung-Tae
    • Journal of the Korea Computer Industry Society
    • /
    • v.7 no.3
    • /
    • pp.253-262
    • /
    • 2006
  • There are some differences between the movements that are produced with closed system and opened system. When an object is moved by the force occurred inside the object, It is called closed movement on the other hand,when the object is moved by the external force. the system is called opened movement. The closed movement model is consist of a linear closed movement system and a nonlinear closed movement system. The approximate equations of the approximate model are derived from the principles and experimental devices of the linear closed movement systems. Various nonlinear closed movement modes and experimental devices are also compared. The results show that linear closed movement model can be derived from nonlinear system due to the couple of nonlinear closed movement model.

  • PDF

Compressive force regulates ephrinB2 and EphB4 in osteoblasts and osteoclasts contributing to alveolar bone resorption during experimental tooth movement

  • Hou, Jianhua;Chen, Yanze;Meng, Xiuping;Shi, Ce;Li, Chen;Chen, Yuanping;Sun, Hongchen
    • The korean journal of orthodontics
    • /
    • v.44 no.6
    • /
    • pp.320-329
    • /
    • 2014
  • Objective: To investigate the involvement of ephrinB2 in periodontal tissue remodeling in compression areas during orthodontic tooth movement and the effects of compressive force on EphB4 and ephrinB2 expression in osteoblasts and osteoclasts. Methods: A rat model of experimental tooth movement was established to examine the histological changes and the localization of ephrinB2 in compressed periodontal tissues during experimental tooth movement. RAW264.7 cells and ST2 cells, used as precursor cells of osteoclasts and osteoblasts, respectively, were subjected to compressive force in vitro. The gene expression of EphB4 and ephrinB2, as well as bone-associated factors including Runx2, Sp7, NFATc1, and calcitonin receptor, were examined by quantitative real-time polymerase chain reaction (PCR). Results: Histological examination of the compression areas of alveolar bone from experimental rats showed that osteoclastogenic activities were promoted while osteogenic activities were inhibited. Immunohistochemistry revealed that ephrinB2 was strongly expressed in osteoclasts in these areas. Quantitative real-time PCR showed that mRNA levels of NFATc1, calcitonin receptor, and ephrinB2 were increased significantly in compressed RAW264.7 cells, and the expression of ephrinB2, EphB4, Sp7, and Runx2 was decreased significantly in compressed ST2 cells. Conclusions: Our results indicate that compressive force can regulate EphB4 and ephrinB2 expression in osteoblasts and osteoclasts, which might contribute to alveolar bone resorption in compression areas during orthodontic tooth movement.

Validation of the seismic response of an RC frame building with masonry infill walls - The case of the 2017 Mexico earthquake

  • Albornoz, Tania C.;Massone, Leonardo M.;Carrillo, Julian;Hernandez, Francisco;Alberto, Yolanda
    • Advances in Computational Design
    • /
    • v.7 no.3
    • /
    • pp.229-251
    • /
    • 2022
  • In 2017, an intraplate earthquake of Mw 7.1 occurred 120 km from Mexico City (CDMX). Most collapsed structural buildings stroked by the earthquake were flat slab systems joined to reinforced concrete (RC) columns, unreinforced masonry, confined masonry, and dual systems. This article presents the simulated response of an actual six-story RC frame building with masonry infill walls that did not collapse during the 2017 earthquake. It has a structural system similar to that of many of the collapsed buildings and is located in a high seismic amplification zone. Five 3D numerical models were used in the study to model the seismic response of the building. The building dynamic properties were identified using an ambient vibration test (AVT), enabling validation of the building's finite element models. Several assumptions were made to calibrate the numerical model to the properties identified from the AVT, such as the presence of adjacent buildings, variations in masonry properties, soil-foundation-structure interaction, and the contribution of non-structural elements. The results showed that the infill masonry wall would act as a compression strut and crack along the transverse direction because the shear stresses in the original model (0.85 MPa) exceeded the shear strength (0.38 MPa). In compression, the strut presents lower stresses (3.42 MPa) well below its capacity (6.8 MPa). Although the non-structural elements were not considered to be part of the lateral resistant system, the results showed that these elements could contribute by resisting part of the base shear force, reaching a force of 82 kN.

Development of Truck Crane Analysis Program with Boom Flexibility (붐의 유연성을 고려한 트럭크레인의 설계 전용 동력학 해석 프로그램 개발)

  • 박찬종
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.6
    • /
    • pp.28-35
    • /
    • 1998
  • Computer simulation technique has been applied on the various engineering fields to reduce cost and development period. On this paper, we introduce a crane analysis program. Using this program, we can predict reaction force of each part or supporting force of truck crane on a personal computer system with out exclusive knowledge of multi-body dynamics. In order to consider the effect of boom flexibility according to each working condition, flexible dynamic theory is applied to the program. Actual crane model is analyzed on special work condition using this program and the results are compared with those of rigid boom model.

  • PDF

Calculation of Mixed Lubrication at Piston Ring and Cylinder Liner Interface

  • Cho, Myung-Rae;Park, Jae-Kwon;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.859-865
    • /
    • 2001
  • This paper reports on the theoretical analysis of mixed lubrication for the piston ring. The analytical model is presented by using the average flow and asperity contact model. The cyclic variations of the nominal minimum oil film thickness are obtained by numerical iterative method. The total friction is calculated by using the hydrodynamic and asperity contact theory. The effect of the roughness height, pattern, and engine speed on the nominal minimum film thickness, friction force, ad frictional power losses are investigated. As the roughness height increases, the nominal oil film thickness and total friction force increase. Also, the effect of the surface roughness on the boundary friction is dominant at low engine speed and high asperity height. The longitudinal roughness pattern shows lower mean oil film pressure and thinner oil film thickness compared to the case of the isotropic and transverse roughness patterns.

  • PDF

Welding deformation analysis based on improved equivalent strain method to cover external constraint during cooling stage

  • Kim, Tae-Jun;Jang, Beom-Seon;Kang, Sung-Wook
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.5
    • /
    • pp.805-816
    • /
    • 2015
  • In the present study, external restraints imposed normal to the plate during the cooling stage were determined to be effective for reduction of the angular distortion of butt-welded or fillet-welded plate. A welding analysis model under external force during the cooling stage was idealized as a prismatic member subjected to pure bending. The external restraint was represented by vertical force on both sides of the work piece and bending stress forms in the transverse direction. The additional bending stress distribution across the plate thickness was reflected in the improved inherent strain model, and a set of inherent strain charts with different levels of bending stress were newly calculated. From an elastic linear FE analysis using the inherent strain values taken from the chart and comparing them with those from a 3D thermal elasto-plastic FE analysis, welding deformation can be calculated.

A Study on the Dynamic Wheel Loads of 3-D Vehicle Model Considering Tire Enveloping (타이어 접지폭을 고려한 3차원 차량모델에 의한 동적 차륜하중에 관한 연구)

  • Chung, Tae Ju
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.95-104
    • /
    • 2002
  • In this paper, research for dynamic wheel loads of 3-D vehicle model considering tire enveloping model is carried out. Heavy trucks with 2-axles and 3-axles are modeled by 7-d.o.f. and 8-d.o.f., in which contact length of tire and pitching of tandem spring axles is considered. Dynamic equations of vehicle are derived by using the Lagrange's equation and solution of the equation is calculated by 5th Runge-Kutter method. The validity of the developed 3-D vehicle model is demonstrated by comparing the results obtained by the present method and experimental data by Whittemore. The maximum impact factors of tire force are calculated when vehicle models of 8ton and 15ton dump truck are running on the different class roads with 1.0km and on the various step bump.

Analysis of the Current-Collection Performance of a High-Speed Train Using Finite Element Analysis Method (유한 요소 해석 기법을 이용한 고속 철도 차량의 집전 성능 해석)

  • Jung, Sung-Pil;Park, Tae-Won;Kim, Young-Guk;Park, Chan-Kyoung;Paik, Jin-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.827-833
    • /
    • 2011
  • In this study, a simulation model to estimate the current-collection performance of a high-speed train was developed by using a commercial finite element analysis software, SAMCEF. A three-dimensional springDdamperDmass model of a pantograph was created, and its reliability was validated by comparing the receptance of the model to that of the actual pantograph. The wave propagation speed of the catenary model was compared with the analytical wave propagation speed of the catenary system presented in the UIC 799 OR standard. The length of the droppers was controlled, and the pre-sag of the contact wire due to gravity was considered. The catenary and the pantograph were connected by using a contact element, and the contact force variation when the pantograph was moved at velocities of 300 km/h and 370 km/h was obtained. The average, standard deviation, maximum, and minimum values of the contact force were analyzed, and the effectiveness of the developed simulation model was examined.

Modelling of shear deformation and bond slip in reinforced concrete joints

  • Biddah, Ashraf;Ghobarah, A.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.4
    • /
    • pp.413-432
    • /
    • 1999
  • A macro-element model is developed to account for shear deformation and bond slip of reinforcement bars in the beam-column joint region of reinforced concrete structures. The joint region is idealized by two springs in series, one representing shear deformation and the other representing bond slip. The softened truss model theory is adopted to establish the shear force-shear deformation relationship and to determine the shear capacity of the joint. A detailed model for the bond slip of the reinforcing bars at the beam-column interface is presented. The proposed macro-element model of the joint is validated using available experimental data on beam-column connections representing exterior joints in ductile and nonductile frames.

Steering and Driver Model to Evaluate the Handling and Stability Characteristics (조종안정성평가 시험을 위한 조향 및 운전자모델)

  • Tak, Tae-oh;Choi, Jae-min
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.241-248
    • /
    • 1998
  • In this study, a modeling method of power-assisted steering systems and driver models for vehicle dynamic analysis using AUTODYN7 is presented. Pressure-flow relations of flow control valve are derived, and the equations of motion of a steering gear are obtained. Combining pressure-flow relations and equations of motion, the steering force can be represented as a function of steering wheel angle or torque. Driver model was modeled based on a PID controller and forward target method. With the steering systems and driver model, various driving tests are conducted using AUTODYN7.

  • PDF