• Title/Summary/Keyword: 6H_2O$

Search Result 6,927, Processing Time 0.041 seconds

Zinc-induced Apoptosis in C6 glial Cells via Generation of Hydrogen Peroxide($H_2O_2$) (신경교세포주 C6 glial에서 Zinc의 Hydrogen Peroxide($H_2O_2$) 생성을 통한 세포고사)

  • 이지현;김명선;소흥섭;김남송;조광호;이향주;이기남;박길래
    • Toxicological Research
    • /
    • v.16 no.3
    • /
    • pp.179-185
    • /
    • 2000
  • Zinc is known to generate reactive oxygen species (ROS) including superoxide anion and hydrogen peroxide ($H_2O_2$), which eventually contribute to cytotoxicity in a variety of cell types. Here in, we demonstrated that zinc decreased the viability of C6 glial cells in a time and dose-dependent manner, which was revealed as apoptosis characterized by ladder-pattern fragmentation of genomic DNA. chromatin condensation and DNA fragmentation in Hoechst dye staining. Zinc-induced apoptosis of C6 glial cells was prevented by the addition of catalase and antioxidants including reduced glutathione (GSH), N-acetyl-L-cysteine (NAC) and pyrrolidinedithiocarbamate (PDTC). Wefurther confirmed that zinc decreased intrac-ellular levels of GSH and generated $H_2O_2$in C6 glial cells. Moreover, antioxidants also decreased the generation of zinc-induced $H_2O_2$ in C6 glial cells. These data indicated that zinc-induced the apoptotic death of C6 glial cells via generation of reactive oxygen species such as $H_2O_2$.

  • PDF

Rates and Mechanism of the Reactions of Aquaoxomolybdenum (IV) Trimer with Vanadium (V) (아쿠아옥소몰리브덴(IV) 삼합체 착물과 바나듐(V)과의 반응에 대한 속도와 메카니즘)

  • Chang-Su Kim;Moon-Pyoung Yi
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.178-183
    • /
    • 1987
  • The kinetics of the reaction of $[Mo_3O_4(H_2O)_9]^{4+}$ with $VO_2^+$have been studied at $25^{\circ}C$ by spectrophotometric method. With$VO_2^+$ in excess, the $[Mo_3O_4(H_2O)_9]^{4+}$ reaction can be expressed as $Mo^{IV}_3+6V^V{\rightleftarrows}3Mo^{IV}+6V^IV}$. Observed rate constants for the reaction are dependent on [$H^+$] and [$VO_2^+$]. Mechanism for the redox of $[Mo_3O_4(H_2O)_9]^{4+}$and $VO_2^+$ is proposed and discussed.

  • PDF

커피박 기반 바이오차 복합재를 이용한 해상 및 육상 기인 오폐수로부터의 인 제거

  • 류재형;양재;장재수
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.246-248
    • /
    • 2022
  • 커피박을 FeCl3·6H2O, MgCl2·6H2O 및 AlCl3·6H2O 용액으로 전처리하여 제조한 커피박 바이오차 복합재 중에서 MgCl2·6H2O 용액으로 전처리하여 제조한 바이오차 복합재가 인산염에 대한 가장 큰 제거율을 나타내었다. 커피박 바이오차 복합재의 인산염에 대한 제거율을 높이기 위해서는 FeCl3·6H2O 또는 MgCl2·6H2O 용액의 농도를 0.5 M 이상에서 커피박을 전처리 하여야 한다.

  • PDF

Theoretical Investigation for the Structures and Binding Energies of H2O3 and Water (H2O) Clusters (H2O3과 물(H2O) 클러스터들의 분자구조와 열역학적 안정성에 대한 이론적 연구)

  • Seo, Hyun-il;Kim, Jong-Min;Song, Hui-Sung;Kim, Seung-Joon
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.6
    • /
    • pp.328-338
    • /
    • 2017
  • The density functional theory(DFT) and ab initio calculations have been applied to investigate hydrogen interaction of $H_2O_3(H_2O)_n$ clusters(n=1-5). The structures, IR spectra, and H-bonding energies are calculated at various levels of theory. The $trans-H_2O_3$ monomer is predicted to be thermodynamically more stable than cis form at the CCSD(T)/cc-pVTZ level of theory. For clusters, the geometries are optimized at the MP2/cc-pVTZ level of theory. The binding energy of $H_2O_3-H_2O$ cluster is predicted to be -6.39 kcal/mol at the CCSD(T)//MP2/cc-pVTZ level of theory after zero-point vibrational energy (ZPVE) and basis set superposition error (BSSE) correction. This result implies that $H_2O_3$ is a stronger proton donor(acid) than either $H_2O$ or $H_2O_2$. The average binding energies per $H_2O$ are predicted to be 8.25 kcal/mol for n=2, 7.22 kcal/mol for n=3, 8.50 kcal/mol for n=4, and 8.16 kcal/mol for n=5.

Development of a Semiconductor Odor Gas Sensor for the Measurement of CH3SH with Taguchi Experimental Design (Taguchi 실험 계획법에 의한 CH3SH 반도체 악취 가스 센서의 개발)

  • Kim Sun-Tae;Choi Il-Hwan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.6
    • /
    • pp.783-792
    • /
    • 2004
  • In this study, a thick-film semiconductor odor gas sensor for the detection of $CH_3$SH was developed using SnO$_2$ as the main substrate and was investigated in terms of its sensitivity and reaction time. In the process of manufacturing the sensor, Taguchi's design of experiment (DOE) was applied to analyze the effects of a variety of parameters, including the substrate, the additives and the fabrication conditions, systematically and effectively. Eight trials of experiments could be possible using the 27 orthogonal array for the seven factors and two levels of condition, which originally demands 128 trials of experiments without DOE. The additives of Sb$_2$O$_{5}$ and PdCl$_2$ with the H$_2$PtCl$_{6}$ ㆍ6$H_2O$ catalyst were appeared to be important factors to improve the sensitivity, and CuO, TiO$_2$, V$_2$O$_{5}$ and PdO were less important. In addition, TiO$_2$, V$_2$O$_{5}$ and PdO would improve the reaction time of a sensor, and CuO, Sb$_2$O$_{5}$, PdCl$_2$ and H$_2$PtCl$_{6}$ㆍ6$H_2O$ were negligible. Being evaluated simultaneously in terms of both sensitivity and reaction time, the sensor showed the higher performance with the addition of TiO$_2$ and PdO, but the opposite results with the addition of CuO, V$_2$O$_{5}$, Sb$_2$O$_{5}$ and PdCl$_2$. The amount of additives were superior in the case of 1% than 4%. H$_2$PtCl$_{6}$ㆍ6$H_2O$ would play an important role for the increase of sensor performance as a catalyst.nce as a catalyst.

Studies on Polymerization of Metal Anion (III). The Temperature Effect on Polymolybdate Ions Equilibrium in 1 M $NaCIO_4$ Solution (Metal Anion Polymerization에 관한 연구 (제3보). The Temperature Effect on Polymolybdate Ions Equilibrium in 1 M $NaClO_4$Solution)

  • Sang Woon Ahn;Eui Suh Park
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.3
    • /
    • pp.145-153
    • /
    • 1973
  • The temperature effects on the equilibria between polymolybdatd anions in 1M sodium perchlorate solution has been investigated in the temperature range of 20~50$^{\circ}$C. The polymolybdate anions formed are heptamolybdate ($Mo_7O_{24}^{6-}$) ions and the protonized forms of heptamolybdate ions ($H_LMo_7O_{24}^{(6-L)-}$). The equilibrium constants for the formation of heptamolybdate ions calculated by Sillen's method are as follow;$8H^{+}+7MoO_4^{2-}=Mo_7O_{24}^{6-}+4H_2O$, $k_{7.8}=2.77{\times}10^{53}:20^{\circ}C= 9.29{\times}10^{51}:40^{\circ}C$,$k_{7.8}= 4.22{\times}10^{52}:30^{\circ}C = 9.29{\times}10^{51}:50^{\circ}C$ The enthalpy change for calculated for the above reaction is 31.51 kcal/mole. A method of calculation of the equilibrium constants for the formation of protonized heptamolybdate ions from heptamolybdate ions and hydrogen ions has been derived. The equilibrium constants calculated for the formation of protonized heptamolybdate ions are as follow; $ LH^++ Mo_7O_{24}^{-6} = H_LMo_7O_{24}^{(6-L)-} : L = 1\;or\;2$, $k_1 = 2.31{\times}10^4=2.53{\times}10^4=2.76{\times}10^4= 3.10{\times}10^4$, $k_2 = 6.19{\times}10^7\;20^{\circ}C = 7.80{\times}10^7\;30^{\circ}C = 1.22{\times}10^8\;40^{\circ}C = 2.03{\times}10^8\;50^{\circ}C$The enthalpy change for the following step reactions are as follow;$H^{+}+Mo_7O_{24}^{6-}= HMo_7O_{24}^{5-}\;{\Delta}H^{\circ}=1.90 kcal/mole$, $2H^{+}+Mo_7O_{24}^{6-}=H_2Mo_7O_{24}^{4-}\;{\Delta}H^{\circ}=7.50kcal/mole$

  • PDF

A Study on the Hydrothermal Synthesis of Tobermorite in the System of CaO-SiO2-H2O and Cement Sludge-SiO2-H2O (생석회-규사-수계 및 시멘트 슬러지-규사-수계에서 Tobermorite의 수열합성에 관한 연구)

  • Rho, Jae-Seong;Hong, Seong-Su;Cho, Heon-Young;Choi, Sang-Won
    • Applied Chemistry for Engineering
    • /
    • v.4 no.2
    • /
    • pp.291-299
    • /
    • 1993
  • Hydrothermal synthesis of 1.13nm tobermorite was performed to obtain the mixing ratio of raw materials, the optimum reaction time and the effect of aluminum in two systems, $CaO-SiO_2-H_2O$ and cement sludge-$SiO_2-H_2O$. 1.13nm tobermorite($5CaO{\cdot}6SiO_2{\cdot}5H_2O:C_5S_6H_5$) was synthesized excellently from $CaO-SiO_2-H_2O$ system on each mole ratio (0.4, 0.8) of $CaO/SiO_2$ at $180^{\circ}C$. But a tobermorite crystals had a sign of crystal conversion after 6 hours of reaction times in the case of $CaO/SiO_2=0.4$ and 4 hours of reaction time in the case of $CaO/SiO_2=0.8$. However, a tobermorite synthesized from cement sludge wastes did not show the crystal conversion on each mole ratio(0.4, 0.8) of $CaO/SiO_2$ within 10 hours of reaction times. It is considered that aluminum ions dissolved from cement sludge wastes retarded the recrystallization of tobermorite. This role of aluminum ion was confirmed in $CaO-SiO_2-H_2O+Al$ powder system. According as added amount of Al powder was increased from 0.8% to 3.0%, the crystal had a highly flatter and larger shape. Recrvstallization was not detected within the same reaction times when aluminum was added.

  • PDF

A Novel Linking Schiff-Base Type Ligand (L: py-CH=N-C6H4-N=CH-py) and Its Zinc Coordination Polymers:Preparation of L, 2-Pyridin-3-yl-1H-benzoimidazol, trans-[Zn(H2O)4L2].(NO3)2.(MeOH)2[Zn(NO3)(H2O)2(L)].(NO3).(H2O)2 and [Zn(L)(OBC)(H2O)] (OBC = 4,4'-Oxybis(benzoate))

  • Kim, Han-Na;Lee, Hee-K.;Lee, Soon-W.
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.6
    • /
    • pp.892-898
    • /
    • 2005
  • A long, bis(monodentate), linking Schiff-base ligand L (py-CH=N-$C_6H_4$-N=CH-py) was prepared from 1,4-phenylenediamine and 3-pyridinecarboxaldehyde by the Schiff-base condensation. Ligand L has two terminal pyridyl groups capable of coordinating to metals through their nitrogen atoms. In contrast, the same reaction between 1,2-phenylenediamine and 3-pyridinecarboxaldehyde produced a mixture of imidazol isomers (2-pyridin-3-yl-1H-benzoimidazole), which are connected to one another by the N-H…N hydrogen bonding to form a tetramer. From Zn($NO_3)_2{\cdot}6H_2O$ and ligand L under various conditions, one discrete molecule, trans- [Zn($H_2O)_4L_2]{\cdot}(NO_3)_2{\cdot}(MeOH)_2$, and two 1-D zinc polymers, [Zn$(NO_3)(H_2O)_2(L)]{\cdot}(NO_3){\cdot}(H_2O)_2$ and [Zn(L) (OBC)($H_2O$)], were prepared. In ligand L, the N$\ldots$N separation between the terminal pyridyl groups is 13.994 $\AA$, with their nitrogen atoms at the meta positions (3,3’) in a trans manner. The corresponding N$\ldots$N separations in its compounds range from 13.853 to 14.754 $\AA$.

Synthesis of Single Crystalline Analcime and Its Single-crystal Structure, |Na0.94(H2O)|[Si2.06Al0.94O6]-ANA: Determination of Cation Sites, Water Positions, and Si/Al Ratios (결정성 아날심(|Na0.94(H2O)|[Si2.06Al0.94O6]-ANA)의 합성 및 단결정구조: 양이온 및 물 분자의 위치, Si/Al 비의 결정)

  • Seo, Sung-Man;Suh, Jeong-Min;Ko, Seong-Oon;Lim, Woo-Taik
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.4
    • /
    • pp.570-574
    • /
    • 2011
  • Large colorless single crystals of analcime with diameters up to 0.20 mm have been synthesized from gels with the composition of $3.00SiO_2$ : $1.50NaAlO_2$ : 8.02NaOH : $454H_2O$ : 5.00TEA. The fully $Na^+$-exchanged analcime have been prepared with aqueous 0.1 M NaCl (pH adjusted from 6 to 11 by dropwise addition of NaOH). The single-crystal structure of hydrated $|Na_{0.94}(H_2O)|[Si_{2.06}Al_{0.94}O_6]$-ANA per unit cell, a=13.703(3) ${\AA}$, has been determined by single-crystal X-ray diffraction technique in the orthorhombic space group Ibca at 294 K. The structure was refined using all intenties to the final error indices (using only the 1,446 reflections for which $F_o$ > $4{\sigma}(F_o))R_1/wR_2$ = 0.054/0.143. About 15 $Na^+$ ions are located at three nonequivalent positions and octahedrally coordinated. The chemical composition is $Na_{0.94}(H_2O)Si_{2.06}Al_{0.94}O_6$. The Si/Al ratio of synthetic analcime is 2.19 determined by the occupations of cations, 14.79, in the single-crystal determination work.

Synthesis and structure analysis of the bis(dicyclohexylammonium) chromate dihydrate complex, [(C6H11)2NH2]2[CrO4]·2H2O

  • Kim, Chong-Hyeak;Moon, Hyoung-Sil;Lee, Sueg-Geun
    • Analytical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.448-451
    • /
    • 2007
  • A new bis(dicyclohexylammonium) chromate dihydrate complex, $[(C_6H_{11})_2NH_2]_2[CrO_4]{\cdot}2H_2O$, (I), has been synthesized and its structure analyzed by FT-IR, EDS, elemental analysis, ICP-AES, and single crystal X-ray diffraction methods. The Cr(VI) complex (I) is tetragonal system, I${\bar{4}}$2d space group with a = 12.5196(1), b = 12.5196(1), c = $17.3796(3){\AA}$, a = ${\beta}$ = ${\gamma}$ = $90^{\circ}$, V = $2724.09(6){\AA}^3$, Z = 4. The crystal structure of complex (I) consists of tetrahedral chromate $[CrO_4]^{2-}$ anion, two organic dicyclohexylammonium $[(C_6H_{11})_2NH_2]^+$ cations and two lattice water molecules. The chromate anion and protonated dicyclohexylammonium cation is mainly constructed through the ionic bond. The cyclohexylammonium rings of the dicyclohexylammonium cation take the chair form and vertical configuration with each other. The N-H${\cdot}$O and O-H${\cdot}$O hydrogen bond networks between the $N_{dicyclohexylammonium}$, $O_{water}$ and $O_{chromate}$ atom lead to self-assembled molecular conformation and stabilize the crystal structure.