• Title/Summary/Keyword: 680MPa DP steel

Search Result 2, Processing Time 0.016 seconds

Nanoindenter Test of 680MPa Dual Phase Steel Charged with Hydrogen (수소주입시킨 680MPa DP강의 나노인덴터 시험)

  • Choi, Jong-Woon;Park, Jae-Woo;Kang, Kae-Myung
    • Journal of Surface Science and Engineering
    • /
    • v.47 no.1
    • /
    • pp.33-38
    • /
    • 2014
  • Nanoindentater tests were conducted to conducted nanoindentation microhardness of the individual phase of ferrite and martensite of 680MPa dual-phase (DP) steel charged with hydrogen. Hydrogen was charged by electrochemical method with current densities of 150, $200mA/cm^2$ for charging times of 5, 10, 25, 50 hours, respectively. Nanoindenter test results showed that the nanoindentation microhardnesses of ferrite phase of DP steel were varied from min. 1.58 GPa to max. 2.82 GPa, and the nanoindentation microhardnesses of martensite phase varied from min. 3.19 GPa to max. 5.16 GPa with the variation of hydrogen charging conditions. It was observed that the variations of the nanoindention microhardnesses of martenstie phase were higher than those of ferrite phases. It was thought that martensite phase in the 680MPa DP steel was more sensitive than ferrite phase to hydrogen embrittlement.

Hydrogen Embrittlement of 680 MPa DP sheet steel with Electrochemical Hydrogen charging conditions of Two Electrolytes (2종 전해질에서의 전기화학적 수소주입조건에 따른 680 MPa DP 박강판의 수소취성)

  • Park, Jae-Woo;Kang, Kae-Myung
    • Journal of Surface Science and Engineering
    • /
    • v.47 no.5
    • /
    • pp.257-262
    • /
    • 2014
  • In this paper, the behavior of hydrogen embrittlement of 680MPa DP sheet steel according to hydrogen charging conditions in acid and alkali electrolytes atmosphere was investigated. At this time, 0.5 M $H_2SO_4$ and 0.5M NaOH was used for electrolytes atmosphere and the effect on embrittlemnet of 680MPa DP sheet steel according to current density and charging time was evaluated by the change of subsurface microhardness in DP specimens chared hydrogen. As a result of this experiment, the microhardness of the layer directly below the surface was increased more than the microhardness of the subsurface zone in both electrolytes cases, but the change of the subsurface microhardness in both electrolytes was more affected by the increase of charging time than the increase of current density. The microhardness of subsurface zone in 0.5 M $H_2SO_4$ acid electrolyte was increased more than the microhardness in 0.5M NaOH alkali electrolyte. It was supposed that acid atmosphere was more sensitive to hydrogen embrittlement than alkali atmosphere on electrolyte atmosphere of hydrogen charge.