DOI QR코드

DOI QR Code

Nanoindenter Test of 680MPa Dual Phase Steel Charged with Hydrogen

수소주입시킨 680MPa DP강의 나노인덴터 시험

  • Choi, Jong-Woon (Department of Materials Science and Engineering, Seoul National University of Science & Technology) ;
  • Park, Jae-Woo (Department of New Energy Engineering, Graduate School of Energy & Environment, Seoul National University of Science & Technology) ;
  • Kang, Kae-Myung (Department of Materials Science and Engineering, Seoul National University of Science & Technology)
  • 최종운 (서울과학기술대학교 신소재공학과) ;
  • 박재우 (서울과학기술대학교 에너지환경대학원) ;
  • 강계명 (서울과학기술대학교 신소재공학과)
  • Received : 2014.02.06
  • Accepted : 2014.02.24
  • Published : 2014.02.28

Abstract

Nanoindentater tests were conducted to conducted nanoindentation microhardness of the individual phase of ferrite and martensite of 680MPa dual-phase (DP) steel charged with hydrogen. Hydrogen was charged by electrochemical method with current densities of 150, $200mA/cm^2$ for charging times of 5, 10, 25, 50 hours, respectively. Nanoindenter test results showed that the nanoindentation microhardnesses of ferrite phase of DP steel were varied from min. 1.58 GPa to max. 2.82 GPa, and the nanoindentation microhardnesses of martensite phase varied from min. 3.19 GPa to max. 5.16 GPa with the variation of hydrogen charging conditions. It was observed that the variations of the nanoindention microhardnesses of martenstie phase were higher than those of ferrite phases. It was thought that martensite phase in the 680MPa DP steel was more sensitive than ferrite phase to hydrogen embrittlement.

Keywords

References

  1. H. Hashimoto, K. Kibe, Y. Nouno, T. Sasaki, Toyota Tech. Rev., 52 (2002) 1.
  2. M. Sarwar, R. Priestner, J. Mater. Sci., 31 (1996) 2091. https://doi.org/10.1007/BF00356631
  3. A. Kumar, S. B. Singh, K. K. Ray, Mater. Sci. Eng., 474A (2008) 270.
  4. S. Sun, M. Pugh, Mater. Sci. Eng., 335A (2002) 298.
  5. R. G. Davies, Metall. Mater. Trans., 12A (1981) 1667.
  6. T. Kushida, H. Matsumoto, N. Kuratomi, T. Tsumura, F. Nakasato, T. Kudo, Tetsu-to-Hagane, 82 (1996) 297 (in Japanese). https://doi.org/10.2355/tetsutohagane1955.82.4_297
  7. K. M. Kang, J. W. Park, Kor. J. Mater. Res., 20 (2010) 581. https://doi.org/10.3740/MRSK.2010.20.11.581
  8. J. U. Choi, J. W. Park, K. M. Kang, Kor. J. Mater. Res.. 21 (2011) 581. https://doi.org/10.3740/MRSK.2011.21.11.581
  9. C. C. Lee, J. W. Park, K. M. Kang, J. Kor. Inst. Surf. Eng., 45 (2012) 130. https://doi.org/10.5695/JKISE.2012.45.3.130
  10. J. W. Park, K. M. Kang, Kor. J. Mater. Res., 22 (2012) 29. https://doi.org/10.3740/MRSK.2012.22.1.029
  11. K. M. Kang, J. W. Park, J. U. Choi, J. Kor. Inst. Surf. Eng., 46 (2013) 48. https://doi.org/10.5695/JKISE.2013.46.1.048
  12. J. U. Choi, J. W. Park, K. M. Kang, J. Kor. Inst. Surf. Eng., 46 (2013) 126. https://doi.org/10.5695/JKISE.2013.46.3.126
  13. Y. C. Choi, J. W. Park, K. M. Kang, J. Kor. Inst. Surf. Eng., 46 (2013) 229. https://doi.org/10.5695/JKISE.2013.46.5.229
  14. W. C. Oliver and G. M. Pharr, J. Mater. Res., 7 1564 (1992). https://doi.org/10.1557/JMR.1992.1564

Cited by

  1. Small Punch Test of TRIP Steel Charged with Hydrogen under Different Electrolyte Condition vol.19, pp.1, 2015, https://doi.org/10.7842/kigas.2015.19.1.64