• Title/Summary/Keyword: 60 GHz Band

Search Result 215, Processing Time 0.028 seconds

Design and implementation of planar UWB antenna with dual band rejection characteristics

  • Woon Geun Yang;Tae Hyeon Nam
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.109-115
    • /
    • 2023
  • In this paper, we design and implement an Ultra-Wide Band (UWB, 3.1~10.6 GHz) antenna with 5G mobile communication (3.42~3.70 GHz) and Wireless Local Area Network (WLAN, 5.15~5.825 GHz) bands rejection characteristics. The proposed antenna consists of a planar radiation patch with two slots. The upper slot contributes to reject 5G mobile communication band and the lower slot contributes to reject WLAN band. The Voltage Standing Wave Ratio (VSWR) values of the proposed antenna show good performances in whole UWB band except for rejection bands based on VSWR 2.0. The proposed UWB antenna was simulated using High Frequency Struture Simulator (HFSS) by Ansoft. The simulated antenna showed dual rejection bands of 3.31~3.92 GHz and 5.04~5.90 GHz in UWB band, and measured antenna showed dual rejection bands of 3.35~3.97 GHz and 5.06~5.97 GHz. The largest VSWR values measured at each rejection band are 13.60 at 3.64 GHz and 10.25 at 5.52 GHz. The measured maximum gain is 5.31 dBi at 10.00 GHz. The lowest gains for the measured antenna at rejection bands are -8.73 dBi at 3.70 GHz and -4.36 dBi at 5.56 GHz.

A Design of CPW Band-Pass Filter with Rejection Band for Ultra-Wideband System (저지 대역을 갖는 UWB용 CPW 대역 통과 여파기의 설계)

  • No, Jin-Won;Hwang, Hee-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.7
    • /
    • pp.704-709
    • /
    • 2007
  • In this paper, a CPW band-pass filter with a rejection band is proposed for UWB(Ultra-Wideband) communication systems. The proposed filter has a band-pass characteristic of wide-band by inserting only a slot in $50{\Omega}$ transmission line. To obtain the band-rejection function at WLAN frequency band($5.15{\sim}5.725GHz$), the designed filter is combined with folded slot resonators on the ground plane of the CPW structure. The fabricated CPW band-pass filter shows a compact size of $15.35{\times}13.60mm$, a wide passband of 2.8 GHz to 9.8 GHz and the narrow stop-band of 5.15 GHz to 5.71 GHz for 3-dB bandwidth. Also, the measured group delay is less than 400 psec throughout the operation frequency band except the rejection band.

New Impedance Matching Scheme for 60 GHz Band Electro-Absorption Modulator Modules

  • Choi, Kwang-Seong;Chung, Yong-Duck;Kang, Young-Shik;Jun, Dong-Suk;Ahn, Byoung-Tae;Moon, Jong-Tae;Kim, Je-Ha
    • ETRI Journal
    • /
    • v.28 no.3
    • /
    • pp.393-396
    • /
    • 2006
  • This letter proposes a new impedance matching scheme of a traveling wave electro-absorption modulator (TWEAM) module for a 60 GHz band radio-over-fiber (ROF) link. A microstrip band pass filter (BPF) was used to achieve impedance matching at the 60 GHz band, and termination resistance was carefully designed to obtain an input impedance close to $50\;{\Omega}$. Also, a bias circuit for the device was designed in the module. The measured return loss and frequency response show that the modulator module observes the characteristics of a filter without the need of a further tuning process.

  • PDF

Design and Fabrication of Quadruple Band Antenna with DGS (DGS를 적용한 4중대역 안테나의 설계 및 제작)

  • Kim, Min-Jae;Choi, Tea-Il;Choi, Young-Kyu;Yoon, Joong-Han
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.1
    • /
    • pp.31-38
    • /
    • 2020
  • In this paper, we propose a quadruple band antenna for GPS/WLAN/WiMAX application. The proposed antenna has quadruple band characteristics by considering the interconnection of four strip lines and DGS on the ground place. The total substrate size is 20.0 mm (W1) ⨯27.0 mm (L1), thickness (h) 1.0 mm, and the dielectric constant is 4.4, which is made of 20.0 mm (W2)⨯ 27.0 mm (L8 + L6+ L10) antenna size on the FR-4 substrate. From the fabrication and measurement results, bandwidths of 60 MHz (1.525 to 1.585 GHz) bandwidth for GPS band, 825 MHz (3.31 to 4.135 GHz) bandwidth for WiMAX band and 480 MHz (2.395 to 2.975 GHz) and 385 MHz (5.10 to 5.485 GHz) bandwidth for WLAN band were obtained on the basis of -10 dB. Also, gain and radiation pattern characteristics are measured and shown in the frequency of triple band as required.

Monolithic Integrated Amplifier for Millimeter Wave Band (밀리미터파 대역 단일 집적 증폭기)

  • Ji, Hong-Gu;Oh, Seung-Hyeub
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.3917-3922
    • /
    • 2010
  • In this paper, 3 stage amplifier MMIC was designed and fabricated with U-band optimized epitaxal pHEMT that produced by large signal characterization and modeling for 60 GHz band. The pHEMT used in this paper, the gate $0.12\;{\mu}m$ length and total gate width of $100\;{\mu}m$, $200\;{\mu}m$ has been modeled using the large signal designed with negative feedback and MCLF instead of MIM capacitor for improving stability. Fabricated MMIC $2.5{\times}1.5mm^2$ size, current about 40 mA, operating frequency 59.5~60.5 GHz, gain 19.9~18.6 dB, input matching characteristics -14.6~-14.7 dB, output matching characteristics -11.9~-16.3 dB and output -5 dBm characteristics were obtained.

Analysis of 1.7GHz Frequency Interference for Domestic Digital Cordless Phone (1.7GHz 대역 국내 디지털 코드리스폰 도입을 위한 주파수 간섭 분석)

  • Kim, Jong-Ho;Kang, Gun-Hwan;Park, Duk-Kyu
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.3
    • /
    • pp.60-67
    • /
    • 2007
  • This research studies and analyzes the current trends and the frequency allocation bands for digital cordless phone(DCP) in other country. From these results, we propose 1.7GHz & 2.4GHz as a effective candidate frequency band for domestic DCP. A proposed 1.7GHz is expected to introduce DECT system of Europe. Therefore it is necessary to make an analysis of interference between 1.7GHz band and an adjacent IMT-2000 band. In this paper, we proposed the allocation of channel for 1.7GHz on the basis of the analysis of frequency interference between 1.7GHz band and an adjacent IMT-2000 band.

Dual-Band Class-F Power Amplifier based on dual-band transmission-lines (이중 대역 전송선로를 활용한 이중 대역 F급 전력 증폭기 개발)

  • Lee, Chang-Min;Park, Young-Cheol
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.4
    • /
    • pp.31-37
    • /
    • 2010
  • In this paper, highly efficient dual-band class-F power amplifiers(PAs) for cellular and WLAN bands are suggested and implemented. For the first step, single-band class-F amplifiers at 840MHz, 2.4GHz are designed using commercial E-pHEMT FETs. The performance of two single band PAs are as much as 81.2% of efficiency with the output power of 24.4dBm with 840MHz PA and 93.5% of efficiency with 22.4dBm from the 2.4GHz. For the dual-band class-F PA, the harmonic controlling circuit with ideal SPDT switch was suggested. The length of transmission line is variable by a SPDT switch. As a results, the operation in 840MHz showed the peak efficiency of 60.5% with 23.5dBm, while in 2.4GHz mode the efficiency was 50.9% with the output power of 19.62dBm. Besides, it is shown that the harmonic controller of class-F above 2Ghz could be implemented on the low cost FR-4 substrate.

Design of CPW-Fed Broadband Antenna Using the CSRR for WLAN Band Notched Characteristic (CSRR을 이용한 WLAN 대역 저지 특성 CPW 급전 광대역 안테나 설계)

  • Kim, Jang-Yeol;Lee, Seung-Woo;Kim, Nam;Oh, Byoung-Cheol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.5
    • /
    • pp.528-537
    • /
    • 2011
  • In this paper, a broadband antenna of the CPW structure with a band-notched characteristic is presented. To obtain this characteristic, the complementary split ring resonator(CSRR) is inserted in the ground plane. In addition, the IEEE 802.11a WLAN band(5.15~5.825 GHz) appears in the band-notched characteristic. The proposed antenna dimension is $36{\times}60{\times}1.6\;mm^3$, and it is designed on the FR-4 substrate having a relative dielectric constant of 4.4. The designed antenna shows that the resonant frequency is 2.03~10.78 GHz below the return loss of -10 dB and a VSWR less than 2 was satisfied. As a result, the proposed CSRR has a band-notched characteristic in the range of 4.917~6.017 GHz which the center frequency is about 5.4 GHz band.

60 GHz broad-band transceiver for wireless LAN (60 GHz 무선랜용 광대역 송ㆍ수신기)

  • 이문교;이복형;김성찬;김용호;이진구
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.11
    • /
    • pp.34-41
    • /
    • 2003
  • In this paper, 60GHz band transmitter and receiver for wireless LAN are designed and implemented using the broband amplifier and mixer fabricated by standard 0.1${\mu}{\textrm}{m}$ MIMIC process of MINT. Output power and gain of the RF transmitter are 0 ㏈m and 1.7㏈, respectively. Noise figure and gain of the receiver are 4.2㏈ and l5.7dB, respectively. Considering the sensitivity and LOS test, this system can communicate with BER of below than 10$^{-6}$ at a distance more than 35m. DSSS, which is strong for concealment and disturbance, is adopted.

Design of Wide band folded monopole slot antenna for 3G/4G/5G/Wi-Fi(dual band) services (3G/4G/5G/Wi-Fi(이중대역)용 광대역 모노폴 슬롯 안테나 설계)

  • Shin, Dong-Gi;Lee, Yeong-Min;Lee, Young-Soon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.1
    • /
    • pp.127-134
    • /
    • 2022
  • A modified folded monopole slot antenna for 3G WCDMA (1.91 ~ 2.17 GHz), 4G LTE (2.17 ~ 2.67 GHz), 3.5 GHz 5G (3.42 ~ 3.7 GHz) and Wi-Fi dual band (2.4 ~ 2.484 GHz / 5.15 ~ 5.825 GHz) was proposed for the first time. The proposed antenna is designed and fabricated on a FR-4 substrate with dielectric constant 4.3, thickness of 1.6 mm, and size of 35 × 60 mm2. The measured impedance bandwidth of the proposed antenna is 2910 MHz(1.84 ~ 4.75 GHz) and 930 MHz(5.11 ~ 6.04 GHz), antenna gain in each frequency band is from 1.811 to 3.450 dBi. In particular, it was possible to obtain a commercially suitable omni-directional radiation pattern in all frequency bands of interest.