• Title/Summary/Keyword: 60 GHz Band

Search Result 215, Processing Time 0.026 seconds

Design of a Low-Power CMOS Fractional-N Frequency Synthesizer for 2.4GHz ISM Band Applications (2.4GHz ISM 대역 응용을 위한 저전력 CMOS Fractional-N 주파수합성기 설계)

  • Oh, Kun-Chang;Kim, Kyung-Hwan;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.6
    • /
    • pp.60-67
    • /
    • 2008
  • A low-power 2.4GHz fractional-N frequency synthesizer has been designed for 2.4GHz ISM band applications such as Bluetooth, Zigbee, and WLAN. To achieve low-power characteristic, the design has been focused on the power optimization of power-hungry blocks such as VCO, prescaler, and ${\Sigma}-{\Delta}$ modulator. An NP-core type VCO is adopted to optimize both phase noise and power consumption. Dynamic D-F/Fs with no static DC current are employed in designing the low-power prescaler circuit. The ${\Sigma}-{\Delta}$ modulator is designed using a modulus mapping circuit for reducing hardware complexity and power consumption. The designed frequency synthesizer which was fabricated using a $0.18{\mu}m$ CMOS process consumes 7.9mA from a single 1.8V supply voltage. The experimental results show that a phase noise of -118dBc/Hz at 1MHz offset, the reference spur of -70dBc at 25MHz offset, and the channel switching time of $15{\mu}s$ over 25MHz transition have been achieved. The designed chip occupies an area of $1.16mm^2$ including pads where the core area is only $0.64mm^2$.

The Development of Land Mobile Communication Microstrip Antenna Using Superstrate Effect (유전체 덮개층 효과를 이용한 이동통신용 마이크로스트립 안테나의 개발에 관한 연구)

  • Hong-Min Lee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.3
    • /
    • pp.243-253
    • /
    • 1997
  • In land mobile communications, incident waves to mobile antenna com mostly from directions having low elevation angles about $60^{\circ}$ down from the vertical plane. In order to receive this waves effectively, planar type antenna was fabricated and its characteristics were analyzed. This type of antenna is achieved using superstrate effect criteria which are derived for a nonzero radiation field extending down to the substrate layer surface plan. A small planar type microstrip antenna which can receive incident waves having low elevation angle was fabricated. Experimental results show that the band width of the fabricated antenna is 70 MHz at 1.2 GHz and have nonzero field down to the layer surface.

  • PDF

Compact Microwave Heartbeat Proximity Sensor Under Human Body Movement (인체 움직임을 고려한 소형 근접 마이크로파 심박 센서)

  • Yun, Gi-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.10
    • /
    • pp.63-69
    • /
    • 2020
  • In this paper, a small microwave sensor that can be applied to a wearable device is proposed because it can detect the heartbeat signal of a human body moving irregularly at low speed. It consist of balanced microstrip radiation patches in the 2.4 GHz ISM band, self-oscillation detection circuit, and feedback circuit. Based on the theoretical development and simulation, the validity of the proposed structure was confirmed and the manufactured prototype was tested. The board size of the circuit is as small as 65mm × 85㎟, and has a low power consumption of 60mW thanks to the simple RF circuit structure. Finally heartbeat signal has been obtained from a human body moving at low speed (0.5Hz) within a linear distance of 2 to 30mm close to the sensor and a lateral distance of ±20mm.

Design and Implementation of Multi-Gigabit Packet Receiver Algorithms based on ECMA Standard (ECMA 표준에 기반한 Multi-Gigabit Packet 수신기 알고리듬 설계 및 구현)

  • Lee, Yong-Wook;Oh, Wang-Rok
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.3
    • /
    • pp.26-31
    • /
    • 2009
  • In this paper, we propose the receiver algorithms suitable for the ECMA standard proposed for multi-gigabit packet transmission in 60 GHz band. In the ECMA standard, various modulation schemes are used for system flexibility. Hence, it is crucial to develop receiver algorithms supporting various modulation schemes with an uniform hardware structure. In this paper, we propose the receiver algorithms supporting DBPSK, DQPSK and OOK modulation schemes simultaneously. The proposed algorithms are not only hardware efficient but also support various modulation schemes with an uniform hardware structure.

Design of Temperature Compensation Circuit to Compensate Temperature Characteristics of VCO (VCO의 온도 특성 보상을 위한 온도 보상 회로의 설계)

  • Kim, Byung-Chul;Huang, Gui-Hua;Cho, Kyung-Rae;Lee, Jae-Buom
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.3
    • /
    • pp.223-228
    • /
    • 2010
  • In this paper, temperature compensation circuit for the X-band voltage controlled oscillator(VCO) is presented by using the temperature sensor with the OP-AMP circuit. The frequency drifting by the temperature could be compensated by applying the tuning voltage which include the linearly changing output voltage of the temperature sensor. As a result, the frequency variation is reduced to 6.6~4.4 MHzfrom the 71~73 MHz variation with the compensation circuit over -30~+$60^{\circ}C$ range, when VCO is operated in the frequency range of 9.95~10.05 GHz.

A Low-pass Filter with Wide-stop Band Using Radial-shaped Open Stub (광대역의 저지대역을 갖는 부채꼴 형태의 개방형 스터브를 이용한 저역통과 여파기)

  • Yoon, Ki-cheol;Kim, Seong-cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.7
    • /
    • pp.1237-1242
    • /
    • 2016
  • In this paper, the low pass filter with harmonics suppression and rejection using parallel coupled-line and radial type open stub is presented. And the resultant characteristic of the proposed low pass filter is that the harmonics are suppressed and rejected in wide bandwidth due to the parallel coupled-line structure. The open stub of a low pass filter is constructed in radial type which can be used to adjust the size of filter. The size of the proposed low pass filter is $6.98{\times}7.60mm2$ and the cut off frequency is 2.45 GHz. And the filter is economical in unit cost and can be constructed easily and has the merit of mass product because the filter is composed of distributed element. Also, the widely rejected harmonics is 128 % in the bandwidth and the insertion and return losses of the low pass filter are 1.07 dB and 19.5 dB, respectively.

Development of Polarization-Controllable Active Phased Array Antenna for Receiving Satellite Broadcasting (편파가변 위성 방송 수신용 능동 위상 배열 안테나 개발)

  • Choi, Jin-Young;Lee, Ho-Seon;Kong, Tong-Ook;Chun, Jong-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.5
    • /
    • pp.325-335
    • /
    • 2018
  • We herein present a study on the active phased array antenna for receiving satellite broadcasting that can electrically align its polarization to that of target transmitters in its moving condition or in the Skew angle arrangement of the broadcasting satellite receiver. Hence, we have developed an active phased array structure composed of the self-developed Vivaldi antenna and multifunction core (MFC) chip, receiving RF front end module, and control units. In particular, the new Vivaldi antenna designed in the Ku-band of 10.7 - 14.5 GHz to receive one desired polarization mode such as the horizontal or vertical by means of an MFC chip and other control units that can control the amplitude and phase of each antenna element. The test results verified that cross-polarization property is 20 dB or higher and the primary beam can be scanned clearly at approximately ${\pm}60^{\circ}$.

Coverage Evaluation of mmWave Small Cell in Outdoor Environment (실외환경에서 밀리미터파 소형 셀의 커버리지 측정)

  • Nguyen, Thanh Ngoc;Jeon, Taehyun
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.162-165
    • /
    • 2017
  • In an effort to compensate the rising of the data throughput demand nowadays, there have been many research works to optimize the radio resource and increase the capacity of the network. At the present, small cell network, mmWave band and beamforming technology are leading the trend and becoming the core solutions of the fifth generation (5G) cellular networks. Since the propagation characteristics of radio wave in the mmWave band is quite different from the conventional bands, the communication systems which work in these bands have to be redesigned. In this paper, a 3D simulation model is discussed for cellular network at 60 GHz in outdoor environments. Coverage analysis and system performance is carried out for a small cell system in the typical urban environment including street canyon simulation scenario. In addition, the beamforming technique is considered to evaluate the throughput improvement. Simulation results show that the mmWave small cell systems is expected to be one of the major candidate technologies to satisfy the requirements of 5G in terms of data rate.

Design and Performance Analysis of CPSK Transmitter for RF-CBTC System in ISM Band (RF-CBTC 시스템을 위한 ISM 대역에서의 CPSK 송신기의 설계 및 성능분석)

  • Kim, Seong-Cheol
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.5
    • /
    • pp.152-161
    • /
    • 2017
  • The CBTC(Communication based Train Control) system employed on 2.4GHz ISM band adopt the IEEE802.11.x standard. Therefor communication time delay, distortion and data losses will be produced. To overcome these problems, CPSK(Continuous Phase shift keying) modulated DS/SS(Direct Sequence Spread Spectrum) transmitter with 908MHz carrier frequency is proposed. Through the eye diagram and scatter diagram the performance is analysed. And the phase noise characteristic of the local oscillator is measured about 60dBc/Hz, this means that the phase noise performance is very good compared to the signal. Reference frequency suppression of the 2nd local oscillator is 50dB below compared to the signal. Through the polarities of the complementary signal equally probable, the line spectrum of the output spectrum is eliminated. The nonlinear effects which introduce the spectral spreading or spectral regeneration is reduced remarkably.

The implementation of Gate Control Hybrid Doherty Amplifier (효율개선을 위한 Gate 제어 Hybrid Doherty 증폭기 구현)

  • Son Kil-young;Lee Suk-hui;Bang Sung-il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.3 s.333
    • /
    • pp.1-8
    • /
    • 2005
  • In this paper, design and implement 60W Doherty power amplifiers for 3GPP repeater and base station transceiver system. Efficiency improvement and high power property of Doherty power amplifier is distinguishable; however implementation of assistance amplifer is difficult, though. To solve the problem, therefore, GCHD (Gate Control Hybrid Doherty) power amplifier is embodied to gate bias adjusament circuit of assistance amplifier to General Doherty power amplifier. Experiment result shows that $2.11\~2.17GHz$, 3GPP operating frequency band, with 62.55 dB gain, PEP output is 50,76 dBm, W-CDMA average power is 47.81 dBm, and -40.05 dBc ACLR characteristic in 5MHz offset frequency band. Each of the parameter satisfied amplifier specification which we want to design. Especially, GCHD power amplifier shows proper efficiency performance improvement in uniformity ACLR than general power amplifier.