• Title/Summary/Keyword: 60 GHz Array Antennas

Search Result 4, Processing Time 0.019 seconds

Spatially Combined V-Band MMIC Coupled Oscillator Array in Waveguide (도파관 내에서 공간적으로 결합된 V-Band MMIC 결합 발진기 Array)

  • 최우열;김홍득;강경태;임정화;권영우
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.8
    • /
    • pp.783-789
    • /
    • 2002
  • In this paper, V-band MMIC coupled oscillator arrays are presented. In the proposed array, two push-pull patch antennas are synchronized by using strong electromagnetic coupling between two antennas. As a result, total size of the array is reduced and the array can be integrated in a single chip. To verify proposed array concept, two 1$\times$2 arrays are designed and fabricated using standard 0.15 um gate length pHEMT MMIC process. The circuits are mounted in an oversized waveguide and measured. The first array shows 0.5 dBm at 56.372 GHz and the second one has an output of 5.85 dBm at 60.147 GHz.

Wideband 4×8 Array Antennas with Aperture Coupled Patch Antenna Elements on LTCC

  • Jun, Dong-Suk;Bondarik, Alexander;Lee, Hong-Yeol;Ryu, Han-Cheol;Paek, Mun-Cheol;Kang, Kwang-Yong;Choi, Ik-Guen
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.3
    • /
    • pp.150-157
    • /
    • 2010
  • We proposed a $4{\times}8$ array antenna with aperture-coupled patch antenna elements. The antenna was designed for 60 GHz operation and fabrication on the low-temperature cofired ceramic(LTCC) substrate($\varepsilon_r$=5.8). The feedline with the stub was designed to enhance the radiating element bandwidth and the transition characteristics between the waveguide (WG) and microstrip line(MSL). Through the optimization of the antenna and feedline geometry, the antenna gain and the performance of the 10 dB bandwidth were 20.2 dBi and 13 % up, respectively. The measured results agreed with the simulated ones.

Compact 0th Order Antenna for 2.4 GHz ISM Band (2.4 GHz ISM대역용 소형 0차 공진 안테나)

  • Do, Sang-In;Yoo, Jin-Ha;Lee, Young-Soon
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.1
    • /
    • pp.60-65
    • /
    • 2015
  • In the present study, compact $0^{th}$ order resonant antenna for 2.4 GHz ISM frequency band is newly proposed. In case of wireless communication systems such as wi-fi, bluetooth and Zigbee, antennas with omni-directional radiation pattern are necessary because of the demands for uniformly received electric field strength without variation for direction. It is well-known that $0^{th}$ order resonant antennas are not only advantageous for miniaturization but also have advantage of maintaining omni-directional radiation pattern. The proposed antenna is composed of two-element array in which the size of unit element should be smaller than ${\lambda}/4$ correspondent to the resonant length of typical monopole antennas The proposed antenna which is placed at middle and upper side of PCB with $50{\times}50mm^2$ size is designed and fabricated within limited space of $8{\times}5mm^2$. The measured impedance bandwidth ($S_{11}{\leq}-10dB$) is about 100 MHz (2.4~2.5 GHz) which corresponds to quite wide bandwidth in comparison with the antenna size, and also the measured peak gain over the passband is more than 3 dBi which is thought to be slightly wider than the other $0^{th}$ order resonant antenna.