• Title/Summary/Keyword: 6-DOF Real-time Simulation

Search Result 26, Processing Time 0.029 seconds

COMPLEX STOCHASTIC WHEELBASE PREVIEW CONTROL AND SIMULATION OF A SEMI-ACTIVE MOTORCYCLE SUSPENSION BASED ON HIERARCHICAL MODELING METHOD

  • Wu, L.;Chen, H.L.
    • International Journal of Automotive Technology
    • /
    • v.7 no.6
    • /
    • pp.749-756
    • /
    • 2006
  • This paper presents a complex stochastic wheelbase preview control method of a motorcycle suspension based on hierarchical modeling method. As usual, a vehicle suspension system is controlled as a whole body. In this method, a motorcycle suspension with five Degrees of Freedom(DOF) is dealt with two local independent 2-DOF suspensions according to the hierarchical modeling method. The central dynamic equations that harmonize local relations are deduced. The vertical and pitch accelerations of the suspension center are treated as center control objects, and two local semi-active control forces can be obtained. In example, a real time Linear Quadratic Gaussian(LQG) algorithm is adopted for the front suspension and the combination of the wheelbase preview and LQG control method is designed for the rear suspension. The results of simulation show that the control strategy has less calculating time and is convenient to adopt different control strategies for front and rear suspensions. The method proposed in this paper provides a new way for the vibration control of multi-wheel vehicles.

Real-Time Estimation of Stewart Platform Forward Kinematic Solution (스튜어트 플랫폼 순기구학 해의 실시간 추정기법)

  • 정규홍;이교일
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1632-1642
    • /
    • 1994
  • The Stewart Platform is a six-degree-of-freedom in-parallel-actuated manipiulator mechanism. The kinematic behavior of parallel mechanisms shows inverse characteristics as compared that of serial mechanisms; i.e, the inverse kinematic problem of Stewart Platform is straightforward, but no closed form solution of the forward kinematic problem has been previously presented. Thus it is difficult to calculate the 6 DOF displacement of the platform from the measured lengths of the six actuators in real time. Here, a real-time estimation algorithm which solves the Stewart Platform kinematic problem is proposed and tested through computer simulations and experiments. The proposed algorithm shows stable convergence characteristics, no estimation errors in steady state and good estimation performance with higher sampling rate. In experiments it is shown that the estimation result is the same as that of simulation even in the presence of measurement noise.

Tracking Control of 6-DOF Shaking Table with Bell Crank Structure (벨 크랭크 구조를 가지는 6 자유도 진동 시험기의 추적 제어)

  • Jeon, Duek-Jae;Park, Sung-Ho;Park, Young-Jin;Park, Youn-Sik;Kim, Hyoung-Eui
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.306-309
    • /
    • 2005
  • This parer describes the tracking control simulation of 6-DOF shaking table with a bell crank structure, which converts the direction of reciprocating movements. For the Joint coordinate-based control which uses lengths of each actuator, the trajectory conversion process inverse kinematics is performed. Applying the Newton-Euler approach, the dynamic equation of the shaking table is derived. To cope with nonlinear problems, time-delay control(TDC) is considered, which has been noted for its exceptional robustness to parameter uncertainties and disturbance, in addition to steady-state accuracy and computational efficiency. If the nominal model is equal to the real system, joint coordinate-based control can be very efficient. However, manufacturing tolerances installation errors and link offsets contaminate the nominal values of the kinematic parameters used in the kinematic model of the shaking table. To compensate differences between the nominal model and the real system. the joint coordinate-based control using acceleration feedback in the Cartesian coordinate space is proposed.

  • PDF

Differential Game Based Air Combat Maneuver Generation Using Scoring Function Matrix

  • Park, Hyunju;Lee, Byung-Yoon;Tahk, Min-Jea;Yoo, Dong-Wan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.204-213
    • /
    • 2016
  • A differential game theory based approach is used to develop an automated maneuver generation algorithm for Within Visual Range (WVR) air-to-air combat of unmanned combat aerial vehicles (UCAVs). The algorithm follows hierarchical decisionmaking structure and performs scoring function matrix calculation based on differential game theory to find the optimal maneuvers against dynamic and challenging combat situation. The score, implying how much air superiority the UCAV has, is computed from the predicted relative geometry, relative distance and velocity of two aircrafts. Security strategy is applied at the decision-making step. Additionally, a barrier function is implemented to keep the airplanes above the altitude lower bound. To shorten the simulation time to make the algorithm more real-time, a moving horizon method is implemented. An F-16 pseudo 6-DOF model is used for realistic simulation. The combat maneuver generation algorithm is verified through three dimensional simulations.

Design of 6-DOF Attitude Controller of the UAV Simulator's Hovering Model

  • Keh, Joong-Eup;Lee, Mal-Young;Kim, Byeong-Il;Chang, Yu-Shin;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.969-974
    • /
    • 2004
  • For a maneuvering unmanned autonomous helicopter, it is necessary to design a proper controller of each flight mode. In this paper, overall helicopter dynamics is derived and hovering model is linearized and transformed into a state equation form. However, since it is difficult to obtain parameters of stability derivatives in the state equation directly, a linear control model is derived by time-domain parametric system identification method with real flight data of the model helicopter. Then, two different controllers - a linear feedback controller with proportional gains and a robust controller - are designed and their performance is compared. Both proposed controllers show outstanding results by computer simulation. These validated controllers can be used to autonomous flight controller of a real unmanned model helicopter.

  • PDF

Graphic Deformation Algorithm for Haptic Interface System (촉각시스템을 위한 그래픽 변형 알고리즘)

  • Kang, Won-Chan;Jeong, Won-Tae;Kim, Young-Dong;Shin, Suck-Doo
    • Proceedings of the KIEE Conference
    • /
    • 2002.06a
    • /
    • pp.67-71
    • /
    • 2002
  • In this paper, we propose a new deformable model based on non-linear elasticity, anisotropic behavior and the finite element method and developed the high-speed controller for haptic control. The proposed controller is based on the PCI/FPGA technology, which can calculate the real position and transmit the force data to device rapidly, The haptic system is composed of 6DOF force display device, high-speed controller and HIR library for 3D graphic deformation algorithm & haptic rendering algorithm. The developed system will be used on constructing the dynamical virtual environment. we demonstrate the relevance of this approach for the real-time simulating deformations of elastic objects. To show the efficiency of our system, we designed simulation program of force-reflecting, As the result of the experiment, we found that the controller has much higher resolution than some other controllers.

  • PDF

Estimation of Rider's Action Force from Measurement of Motion Platform Control Force in the 6 DOF Bicycle Simulator (6 자유도 자전거 시뮬레이터의 운동 장치 제어력을 이용한 운전자의 작용력 추정)

  • 신재철;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.842-847
    • /
    • 2002
  • One of the challenging problems with bicycle simulators is to deal with the inherent unstable bicycle dynamics that is coupled with rider's motion. For the bicycle dynamics calculation and the real time simulation, it is necessary to identify the control inputs from the rider as well as the virtual environments. The six control forces of the Stewart platform-based motion system are used for estimation of the rider's action force, which is one of the important control inputs, but of which the direct measurement is impractical. For the effective estimation of the rider's action force, the dynamics model of the motion system is derived incorporated with both analytical and experimental methods and the sliding mode controller with perturbation estimation is developed.

  • PDF

Implementation of Educational UAV with Automatic Navigation Flight

  • Park, Myeong-Chul;Hur, Hwa-ra
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.8
    • /
    • pp.29-35
    • /
    • 2019
  • This paper proposes a UAV equipped with an automatic control system for educational purposes such as navigation flight or autonomous flight. The proposed UAV is capable of automatic navigation flight and it is possible to control more precisely and delicately than existing UAV which is directly controlled. And it has the advantage that it is possible to fly in a place out of sight. In addition, the user may arbitrarily change the route or route information to use it as an educational purpose for achieving the special purpose. It also allows you to check flight status by shooting a video during flight. For this purpose, it is designed to check the image in real time using 5.8GHz video transmitter and receiver. The flight information is recorded separately and used as data to judge the normal flight after the flight. The result of the paper can be flighted along the coordinates specified using GPS information. Since it can receive real-time video, it is expected to be used for various education purposes such as reconnaissance of polluted area, achievement of special purpose, and so on.

Study on Forward Kinematics of Stewart Platform Using Neural Network Algorithm together with Newton-Raphson Method (신경망과 뉴톤 랩슨 방법을 이용한 스튜어트 플랫폼의 순기구학 해석에 관한 연구)

  • Goo, Sang-Hwa;Son, Kwon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.156-162
    • /
    • 2001
  • An effective and practical method is presented for solving the forward kinematics of a 6-DOF Stewart Platform, using neural network algorithm together with Newton-Raphson method. An approximated solution is obtained from trained neural network, then it is used as an initial estimate for Newton-Raphson method. A series of accurate solutions are calculated with reasonable speed for the entire workspace of the platform. The solution procedure can be used for driving a real-time simulation platform.

  • PDF

Graphic Deformation Algorithm for Haptic Interface System (촉각시스템을 위한 그래픽 변형 알고리즘)

  • Kang, Won-Chan;Kim, Sung-Cheol;Kim, Dong-Ok;Kim, Won-Bae;Kim, Young-Dong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.3
    • /
    • pp.149-154
    • /
    • 2002
  • In this paper, we propose a new graphic deformation algorithm for haptic interface system. Our deformable model is based on non-linear elasticity, anisotropy behavior and the finite element method. Also we developed controller for high-speed communication. The proposed controller is based on the PCI/FPGA technology, which could progress the capability of the position calculating and the force data transmitting. The haptic system is composed of the 6DOF force display device, the high-speed controller, HIR library for 3D graphic deformation algorithm and the haptic rendering algorithm. The developed system will be used on constructing the dynamical virtual environment. We demonstrate the relevance of this approach for the real-time simulating deformations of elastic objects. To show the efficiency of our system, we programmed the simulation of force reflecting. As the result of experiment, we found that it has high stability and easy to control for deformable object than some other systems.