• Title/Summary/Keyword: 6-DOF

Search Result 604, Processing Time 0.026 seconds

Numerical Study about Initial Behavior of an Ejecting Projectile for Varying Flight Conditions (비행 조건 변화에 따른 사출 운동체의 초기 거동에 관한 수치적 연구)

  • Jo, Sung Min;Kwon, Oh Joon;Kwon, Hyuck-Hoon;Kang, Dong Gi
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.517-526
    • /
    • 2019
  • In the present study, unsteady flows around a projectile ejected from an aircraft platform have been numerically investigated by using a three dimensional compressible RANS flow solver based on unstructured meshes. The relative motion between the platform and projectile was described by six degrees of freedom(6DOF) equations of motion with Euler angles and a chimera technique. Initial behavior of the projectile for varying conditions, such as roll and pitch-yaw command on the control surface of the projectile, flight Mach number, and platform pitch angle, was investigated. The ejection stability of the projectile was degraded as Mach number increases. In the transonic condition, the initial behavior of the projectile was found to be unstable as increase of platform pitch angle. By applying the command to control surfaces of the projectile, initial stability was highly enhanced. It was concluded that the proposed simulation data are useful for estimating the ejection behavior of a projectile in design phase.

Development of CMG-Based Attitude Control M&S Software (제어모멘텀휠 기반 자세제어 M&S 소프트웨어 개발)

  • Mok, Sung-Hoon;Kim, Taeho;Bang, Hyochoong;Song, Taeseong;Lee, Jongkuck;Song, Deokki;Seo, Joongbo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.4
    • /
    • pp.289-299
    • /
    • 2019
  • Attitude control modeling and simulation (M&S) can be extensively applied in overall development process, from simple algorithm design to on-board software verification. This paper introduces CMG-based attitude control M&S software, which consists of 6-DOF modeling (CMG and space environments modeling), and attitude control algorithm. The M&S software is divided into three modules, from an inner CMG motor control module to an outer earth observation mission module. While an application of this developed software is currently limited to the initial-phase attitude controller development, its application area can be extended to the later-phases by considering sophisticated model information in future.

The Development of Rule-based AI Engagement Model for Air-to-Air Combat Simulation (공대공 전투 모의를 위한 규칙기반 AI 교전 모델 개발)

  • Minseok, Lee;Jihyun, Oh;Cheonyoung, Kim;Jungho, Bae;Yongduk, Kim;Cheolkyu, Jee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.637-647
    • /
    • 2022
  • Since the concept of Manned-UnManned Teaming(MUM-T) and Unmanned Aircraft System(UAS) can efficiently respond to rapidly changing battle space, many studies are being conducted as key components of the mosaic warfare environment. In this paper, we propose a rule-based AI engagement model based on Basic Fighter Maneuver(BFM) capable of Within-Visual-Range(WVR) air-to-air combat and a simulation environment in which human pilots can participate. In order to develop a rule-based AI engagement model that can pilot a fighter with a 6-DOF dynamics model, tactical manuals and human pilot experience were configured as knowledge specifications and modeled as a behavior tree structure. Based on this, we improved the shortcomings of existing air combat models. The proposed model not only showed a 100 % winning rate in engagement with human pilots, but also visualized decision-making processes such as tactical situations and maneuvering behaviors in real time. We expect that the results of this research will serve as a basis for development of various AI-based engagement models and simulators for human pilot training and embedded software test platform for fighter.

Numerical Verification of Hybrid Optimization Technique for Finite Element Model Updating (유한요소모델개선을 위한 하이브리드 최적화기법의 수치해석 검증)

  • Jung, Dae-Sung;Kim, Chul-Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.19-28
    • /
    • 2006
  • Most conventional model updating methods must use mathematical objective function with experimental modal matrices and analytical system matrices or must use information about the gradient or higher derivatives of modal properties with respect to each updating parameter. Therefore, most conventional methods are not appropriate for complex structural system such as bridge structures due to stability problem in inverse analysis with ill-conditions. Sometimes, moreover, the updated model may have no physical meaning. In this paper, a new FE model updating method based on a hybrid optimization technique using genetic algorithm (GA) and Holder-Mead simplex method (NMS) is proposed. The performance of hybrid optimization technique on the nonlinear problem is demonstrated by the Goldstein-Price function with three local minima and one global minimum. The influence of the objective function is evaluated by the case study of a simulated 10-dof spring-mass model. Through simulated case studies, finally, the objective function is proposed to update mass as well as stiffness at the same time. And so, the proposed hybrid optimization technique is proved to be an efficient method for FE model updating.

3D Simulation Study of Biped Robot Balance Using FPE Method (FPE 방식을 활용한 이족 로봇 균형 유지 3차원 시뮬레이션 연구)

  • Jang, Tae-ho;Kim, Youngshik;Ryu, Bong-Jo
    • Journal of Digital Contents Society
    • /
    • v.19 no.4
    • /
    • pp.815-819
    • /
    • 2018
  • In this study, we investigate balance of a biped robot applying Foot Placement Estimator (FPE) in simulation. FPE method is used to determine a stable foot location for balancing the biped robot when an initial orientation of the robot body is statically unstable. In this case, the 6-DOF biped robot with point foot is modelled considering contact and friction between foot and the ground. For simulation, the mass of the robot is 1 kg assuming the center of robot mass (COM) is located at the center of the robot body. The height from the ground to the COM is 1 m. Robot balance is achieved applying stable foot locations calculated from FPE method using linear and angular velocities, and the height of the COM. The initially unstable angular postures, $5^{\circ}$ and $-5^{\circ}$, of the robot body are simulated. Simulation results confirm that the FPE method provides stable balance of the robot for all given unstable initial conditions.

A Study on the Test Load Simulation Technique for T-50 Full Scale Durability Test (T-50 전기체 내구성시험 시험하중 설계기술 연구)

  • Jung, Jae-Kwon;Lee, Kee-Bhum;Yang, Myung-Seog;Shul, Chang-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.82-87
    • /
    • 2004
  • The general requirements to achieve the structural integrity of the airframe are described in the military specification, MIL-HDBK-1530. One of these requirements is the durability and damage tolerance of the airframe, which should be shown through the analysis and test based on the related specifications. This paper describes the full scale durability test load simulation to evaluate the structural safety and durability of the advanced trainer, T-50. The test load simulation was performed according to the procedure in the military specification and the KAF contract requirements. The durability test design technique which involve the floating test set-up, the optimal test load simulation method, and the 6-DOF test article balance method to secure the real flight conditions as many as possible. It was confirmed that this method will be available in a similar full-scale airframe structural test in future.

Numerical analysis of 2-DOF motions of an ocean floater with sloshing effects (슬로싱 영향을 동반한 해양 부유체의 2자유도 거동 수치해석)

  • Kim, HyunJong;Choi, Yoon-Hwan;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.617-622
    • /
    • 2013
  • The sloshing of liquid inside an ocean floater is caused by disturbances due to waves. For the analysis of sloshing impact within the floater and that of waves on the floater, the coupled analysis method is used. The Stokes $5^{th}$ order non-linear wave theory equations were adapted for wave making. Furthermore, Navier-Stokes equation and Shear-Stress Transport (SST) turbulent model were used to Computational Fluid dynamics, where the ocean floater motions are considered the heave and the pitch motion. The results obtained confirms the mutual relationship between the rigid body motions and that of sloshing, where the sloshing behaviour within the floater is characterized by the wave effects on the floater.

Vibration Control of a Robot Manipulator with a Parallel Drive Mechanism (평행구동방식 로봇 조작기의 진동제어)

  • 최승철;하영균;박영필
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2015-2025
    • /
    • 1991
  • A long and light-weight forearm of the vertical 2 DOF robot manipulator with a heavy payload driven by parallel drive mechanism is modelled as a Euler-Bernoulli beam with a tip mass subjected to a high speed rotation. Governing equation is obtained by Hamilton's principle and represented as state variable form using the perturbed variables which describe the perturbed errors at the manipulator's final configuration. Digitial optimal control and observer theory are used to suppress the forearm vibration and control the positions of the joint angles with measured/estimated state feedback. Computer simulations and experimental results are obtained and compared each other.

Frequency Response Analysis of Array-Type MEMS Resonators by Model Order Reduction Using Krylov Subspace Method (크리로프 부공간법에 근거한 모델차수축소기법을 통한 배열형 MEMS 공진기의 주파수응답해석)

  • Han, Jeong-Sam;Ko, Jin-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.9
    • /
    • pp.878-885
    • /
    • 2009
  • One of important factors in designing MEMS resonators for RF filters is obtaining a desired frequency response function (FRF) within a specific frequency range of interest. Because various array-type MEMS resonators have been recently introduced to improve the filter characteristics such as bandwidth, pass-band, and shape factor, the degrees of freedom (DOF) of finite elements for their FRF calculation dramatically increases and therefore raises computational difficulties. In this paper the Krylov subspace-based model order reduction using moment-matching with non-zero expansion points is represented as a numerical solution to perform the frequency response analyses of those array-type MEMS resonators in an efficient way. By matching moments at a frequency around the specific operation range of the array-type resonators, the required FRF can be efficiently calculated regardless of their operating frequency from significantly reduced systems. In addition, because of the characteristics of the moment-matching method, a minimal order of reduced system with a prearranged accuracy can be determined through an error indicator using successive reduced models, which is very useful to automate the order reduction process and FRF calculation for structural optimization iterations. We also found out that the presented method could obtain the FRF of a $6\times6$ array-type resonator within a seventieth of the computational time necessary for the direct method and in addition FRF calculation by the mode superposition method could not even be completed because of a data overflow with a half after calculation of 9,722 eigenmodes.

Aerodynamic Characteristics of a Canard-Controlled Missile with Freely Spinning Tailfins Using a Semi-Empirical Method and a CFD Code (반실험적 기법 및 CFD 코드를 이용한 자유회전 테일핀을 갖는 커나드 조종 미사일에 관한 공력해석)

  • Yang, Young-Rok;Lee, Jin-Hee;Kim, Mun-Seok;Jung, Jae-Hong;Myong, Rho-Shin;Cho, Tae-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.220-228
    • /
    • 2008
  • In this study the aerodynamic characteristics of a canard-controlled missile with freely spinning tailfins were investigated by using a semi-empirical method and a CFD code. The mean aerodynamic coefficients for the rolling and roll damping moments were first calculated and then used to predict the roll-rate of freely spinning tailfins. The calculation of roll-rate in the CFD code was carried out by combining a Chimera overset grid system and 6-DOF analysis module. The predicted roll-rate was in good agreement with the experimental data for the roll and yaw canard control inputs. It was also shown that the results are in good agreement with the prediction by a CFD code. This indicates that the semi-empirical method can be used to predict the roll-rate of a canard-controlled missile with freely spinning tailfins.