• 제목/요약/키워드: 6-DOF(6-Degree Of Freedom)

검색결과 113건 처리시간 0.024초

Fully Adaptive Feedforward Feedback Synchronized Tracking Control for Stewart Platform Systems

  • Zhao, Dongya;Li, Shaoyuan;Gao, Feng
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권5호
    • /
    • pp.689-701
    • /
    • 2008
  • In this paper, a fully adaptive feedforward feedback synchronized tracking control approach is developed for precision tracking control of 6 degree of freedom (6DOF) Stewart Platform. The proposed controller is designed in decentralized form for implementation simplicity. Interconnections among different subsystems and gravity effect are eliminated by the feedforward control action. Feedback control action guarantees the stability of the system. The gains of the proposed controller can be updated on line without requiring any prior knowledge of Stewart Platform manipulator. Thus the control approach is claimed to be fully adaptive. By employing cross-coupling error technology, the proposed approach can guarantee both of position error and synchronization error converge to zero asymptotically. Because the actuators work in synchronous manner, the tracking performances are improved. The corresponding stability analysis is also presented in this paper. Finally, simulation is demonstrated to verify the effectiveness of the proposed approach.

PFC보상기를 응용한 6축 전기 유압매니퓰레이터의 강인 제어 (Robust Control of a 6-Link Electro-Hydraulic Manipulator using Parallel Feed forward Compensator)

  • 안경관;정연오
    • 한국정밀공학회지
    • /
    • 제20권3호
    • /
    • pp.89-96
    • /
    • 2003
  • An electro-hydraulic manipulator using hydraulic actuators has many nonlinear abetments, and its parameter fluctuations are greater than those of an electrically driven manipulator. So it is relatively difficult to realize not only stable but also accurate trajectory control for the autonomous assembly tasks using hydraulic manipulators. In this report, we propose a two-degree-of-freedom control including parallel feedforward compensator (PFC) where PFC plays a very important role in the stability of a proposed control system. In the experimental results of the 6-link electro hydraulic manipulator, it is verified that the stability and the model matching performance are improved by using the proposed control method.

Sensitivity-based finite element model updating with natural frequencies and zero frequencies for damped beam structures

  • Min, Cheon-Hong;Hong, Sup;Park, Soo-Yong;Park, Dong-Cheon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권4호
    • /
    • pp.904-921
    • /
    • 2014
  • The main objective of this paper is to propose a new Finite Element (FE) model updating technique for damped beam structures. The present method consists of a FE model updating, a Degree of Freedom (DOF) reduction method and a damping matrix identification method. In order to accomplish the goal of this study, first, a sensitivity-based FE model updating method using the natural frequencies and the zero frequencies is introduced. Second, an Iterated Improved Reduced System (IIRS) technique is employed to reduce the number of DOF of FE model. Third, a damping matrix is estimated using modal damping ratios identified by a curve-fitting method and modified matrices which are obtained through the model updating and the DOF reduction. The proposed FE model updating method is verified using a real cantilever beam attached damping material on one side. The updated result shows that the proposed method can lead to accurate model updating of damped structures.

수직이착륙 무인항공기 자동 착륙을 위한 영상기반 항법 (Vision-based Navigation for VTOL Unmanned Aerial Vehicle Landing)

  • 이상훈;송진모;배종수
    • 한국군사과학기술학회지
    • /
    • 제18권3호
    • /
    • pp.226-233
    • /
    • 2015
  • Pose estimation is an important operation for many vision tasks. This paper presents a method of estimating the camera pose, using a known landmark for the purpose of autonomous vertical takeoff and landing(VTOL) unmanned aerial vehicle(UAV) landing. The proposed method uses a distinctive methodology to solve the pose estimation problem. We propose to combine extrinsic parameters from known and unknown 3-D(three-dimensional) feature points, and inertial estimation of camera 6-DOF(Degree Of Freedom) into one linear inhomogeneous equation. This allows us to use singular value decomposition(SVD) to neatly solve the given optimization problem. We present experimental results that demonstrate the ability of the proposed method to estimate camera 6DOF with the ease of implementation.

엔진 마운트용 고무의 동역학적 모델링 (Dynamic modeling of rubber elements in an engine mount system)

  • 박석태;정경렬;이종원;김광준
    • 대한기계학회논문집
    • /
    • 제10권5호
    • /
    • pp.689-697
    • /
    • 1986
  • 본 연구에서는 3자유도(3방향의 병진운동만 고려) 고무마운트모형의 타당성을 검증하기 위하여, 먼저 고무자체의 물성치인 강성계수와 감쇠계수를 진동수와 초기변 형률에 따라 실험을 통해 구하였다. 질량행렬의 모든요소를 쉽게 구할 수 있는 간단 한 시험구조물을 제작하고 여기에 고무아운트를 부착하여 6자유도를 갖는 모의 엔진- 마운트계를 구성한 후 가진실험을 통해 얻은 오무드 매개변수들과 고무의 물성치를 이 용한 컴퓨터 시뮬레이션의 결과를 비교함으로써 고무아운트 모형의 타당성을 검증하였 다. 특히 본 연구에는 유압가진 실험으로부터 얻은 실험결과를 바탕으로 고무의 강 성계수를 주파수의 1차함수로 고려한 경우와 전진동수 영역에서 균일하다고 가정하는 경우를 비교하였다.

휴대용 유도탄 체계의 모델링과 성능분석을 위한 실시간 병렬처리 시뮬레이터 (Real-time Parallel Processing Simulator for Modeling Portable Missile System and Performance Analysis)

  • 김병문;정순기
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권4호
    • /
    • pp.35-45
    • /
    • 2006
  • 본 논문에서는 휴대용 회전 유도탄 체계의 모델링과 성능분석에 사용할 수 있는 실시간 병렬처리 시뮬레이터 개발에 대하여 기술한다. 실시간 병렬처리 시뮬레이터는 항공기의 적외선 형상을 만드는 탐색기 에뮬레이터, 실시간 컴퓨터, 시스템 유닛. 유도 조종 장치 및 탐색기 프로세서 등과 같은 하드웨어 실물장치와 실시간 컴퓨터에 내장된 수학적 모델, 6 자유도 모델 및 공력 모델 등을 구현한 응용 소프트웨어 및 호스트 컴퓨터에 내장된 사용자 프로그램 등으로 구성되었다. 실시간 컴퓨터는 병렬로 연결된 여섯 개의 TI사 C-40 프로세서로 설계되었으며, 기계적 장치와 결합된 아날로그 전자회로를 이용하여 탐색기 에뮬레이터를 설계하였다. 시스템 유닛은 구성 요소간의 임피던스 정합 기능과 미세 신호를 처리하며, 시뮬레이터와 실물 유도탄 발사 장치의 연결이 가능하다. 개발된 실시간 병렬처리 시뮬레이터를 휴대용 회전 유도탄의 성능분석 장치로 사용하기 위하여 현장실험을 통한 결과 검증시험을 수행하였다.

  • PDF

Experimental identification of the six DOF C.G.S., Algeria, shaking table system

  • Airouche, Abdelhalim;Bechtoula, Hakim;Aknouche, Hassan;Thoen, Bradford K.;Benouar, Djillali
    • Smart Structures and Systems
    • /
    • 제13권1호
    • /
    • pp.137-154
    • /
    • 2014
  • Servohydraulic shaking tables are being increasingly used in the field of earthquake engineering. They play a critical role in the advancement of the research state and remain one of the valuable tools for seismic testing. Recently, the National Earthquake Engineering Research Center, CGS, has acquired a 6.1m x 6.1 m shaking table system which has a six degree-of-freedom testing capability. The maximum specimen mass that can be tested on the shaking table is 60 t. This facility is designed specially for testing a complete civil engineering structures, substructures and structural elements up to collapse or ultimate limit states. It can also be used for qualification testing of industrial equipments. The current paper presents the main findings of the experimental shake-down characterization testing of the CGS shaking table. The test program carried out in this study included random white noise and harmonic tests. These tests were performed along each of the six degrees of freedom, three translations and three rotations. This investigation provides fundamental parameters that are required and essential while elaborating a realistic model of the CGS shaking table. Also presented in this paper, is the numerical model of the shaking table that was established and validated.

인공안구 구현을 위한 병렬 구조의 3자유도 회전 로봇 개발 (Development of 3 DOF Parallel Spherical Robot for Artificial Eyeball)

  • 박성령;양승한
    • 한국정밀공학회지
    • /
    • 제31권6호
    • /
    • pp.535-541
    • /
    • 2014
  • In this research, three degree-of-freedom parallel spherical robot is developed for an artificial eyeball. The proposed system is comprised of a moving and a base plate, three prismatic actuators, and a ball joint for an angular movement of the moving plate. The vector analysis is employed to investigate the relationship between positions of the actuators and a pose of the moving plate. The required ranges for every actuators are calculated using the derived inverse kinematics in regard to the combination of two different levels for the size of the system component. Then the size of every components is determined from the analyzed trend. PI controller is employed for the position control of the moving plate. Finally the proposed system is verified using an arbitrary path of the angular movement.

Preliminary tests of a damaged ship for CFD validation

  • Lee, Sung-Kyun;You, Ji-Myoung;Lee, Hyun-Ho;Lim, Tae-Gu;Rhee, Shin-Hyung;Rhee, Key-Pyo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제4권2호
    • /
    • pp.172-181
    • /
    • 2012
  • One of the most critical issues in naval architecture these days is the operational safety. Among many factors to be considered for higher safety level requirements, the hull stability in intact and damaged conditions is the first to ensure for both commercial and military vessels. Unlike the intact stability cases, the assessment of the damaged ship stability is very complicated physical phenomena. Therefore it is widely acknowledged that computational fluid dynamics (CFD) methods are one of most feasible approaches. In order to develop better CFD methods for damaged ship stability assessment, it is essential to perform well-designed model tests and to build a database for CFD validation. In the present study, free roll decay tests in calm water with both intact and damaged ships were performed and six degree-of-freedom (6DOF) motion responses of intact ship in regular waves were measured. Through the free roll decay tests, the effects of the flooding water on the roll decay motion of a ship were investigated. Through the model tests in regular waves, the database that provides 6DOF motion responses of intact ship was established.

A new method for optimal selection of sensor location on a high-rise building using simplified finite element model

  • Yi, Ting-Hua;Li, Hong-Nan;Gu, Ming
    • Structural Engineering and Mechanics
    • /
    • 제37권6호
    • /
    • pp.671-684
    • /
    • 2011
  • Deciding on an optimal sensor placement (OSP) is a common problem encountered in many engineering applications and is also a critical issue in the construction and implementation of an effective structural health monitoring (SHM) system. The present study focuses with techniques for selecting optimal sensor locations in a sensor network designed to monitor the health condition of Dalian World Trade Building which is the tallest in the northeast of China. Since the number of degree-of-freedom (DOF) of the building structure is too large, multi-modes should be selected to describe the dynamic behavior of a structural system with sufficient accuracy to allow its health state to be determined effectively. However, it's difficult to accurately distinguish the translational and rotational modes for the flexible structures with closely spaced modes by the modal participation mass ratios. In this paper, a new method of the OSP that computing the mode shape matrix in the weak axis of structure by the simplified multi-DOF system was presented based on the equivalent rigidity parameter identification method. The initial sensor assignment was obtained by the QR-factorization of the structural mode shape matrix. Taking the maximum off-diagonal element of the modal assurance criterion (MAC) matrix as a target function, one more sensor was added each time until the maximum off-diagonal element of the MAC reaches the threshold. Considering the economic factors, the final plan of sensor placement was determined. The numerical example demonstrated the feasibility and effectiveness of the proposed scheme.