• Title/Summary/Keyword: 6 MW급 해상풍력발전기

Search Result 4, Processing Time 0.02 seconds

Development of High-speed Shaft Coupling for 6 MW Class Offshore Wind Turbine (6 MW급 해상풍력발전기용 고속축커플링 개발)

  • Park, Soo-Keun;Lee, Hyoung-Woo
    • Journal of Wind Energy
    • /
    • v.10 no.4
    • /
    • pp.20-27
    • /
    • 2019
  • High-speed shaft coupling in a wind power system transmits power and absorbs variations in length and spindle dislocation between the gearbox and generator. Furthermore, the coupling has an insulation function that prevents electrical corrosion caused by the flow of the generator's current into the gearbox and prevents overload resulting from sudden power failure from being transferred to the gearbox. Its design, functions, and part verification are described in the IEC61400 and GL Guidelines, which specify that the part must have a durability life of 20 years or longer under distance variation and axial misalignment between the gearbox and the generator. This study presents the design of a high-speed coupling through composite stiffness calculation, structural analysis, and comparative analysis of test and theory to identify the characteristics of high-speed coupling for a large-capacity 6 MW wind power generator. A prototype was fabricated by optimizing the manufacturing process for each part based on the design, and the reliability of the fabricated prototype was verified by evaluating the performance of the target quantitative evaluation items.

The Energy Production of Offshore Wind Farm Using WindPRO (WindPRO를 이용한 해상풍력단지 발전량 예측)

  • Jeong, Moon-Seon;Moon, Chae-Joo;Kwak, Seung-Hun;Choi, Man-Su;Chang, Young-Hak
    • Proceedings of the KIPE Conference
    • /
    • 2010.11a
    • /
    • pp.267-268
    • /
    • 2010
  • 본 논문에서는 풍력발전단지 설계를 목적으로 사용되고 있는 EMD사의 WindPRO2.6을 이용하여 서남해안에 설치된 50m 높이의 Met mast에서 1년 동안 관측된 풍황자원을 분석하고, 특정 풍력발전기를 적용하여 40MW급 해상풍력발전단지를 설계했을 경우 연간 생산되는 발전량을 예측하였다.

  • PDF

A Study on the Suitability of Suction Caisson Foundation for the 5Mw Offshore Wind Turbine (5MW급 해상풍력발전시스템용 Suction Caisson 하부구조물 적합성 연구)

  • Kim, Yong-Chun;Chung, Chin-Wha;Park, Hyun-Chul;Lee, Seunug-Min;Kwon, Dae-Yong;Shi, Wei
    • New & Renewable Energy
    • /
    • v.6 no.3
    • /
    • pp.47-54
    • /
    • 2010
  • Foundation plays an important role in the offshore wind turbine system. Different from conventional foundations, the suction caisson is proven to be economical and reliable. In this work, three-dimensional finite element method is used to check the suitability of suction caisson foundation. NREL 5MW wind turbine is chosen as a baseline model in our simulation. The maximum overturning moment and vertical load at the mudline are calculated using FAST and Bladed. Meanwhile the soil-structure interaction response from our simulation is also compared with the experiment data from Oxford university. The design parameter such as caisson length, diameter of skirt and spacing of multipod are investigated. Accordingly based on these parameters suggestions are given to use suction caisson foundations more efficiently.

Investigation of Winding Connections for Fault-Tolerant of MW Class Offshore Wind Generator with Dual 3-Phase System and Modular (이중 3상 시스템과 모듈러를 갖는 MW급 해상용 풍력발전기의 무정지 기능을 위한 권선 체결방식에 관한 연구)

  • Seo, Jang Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.8
    • /
    • pp.1108-1114
    • /
    • 2013
  • This paper presents a new winding topology for MW class offshore wind generator having modular and dual 3-phase. Based on proposed simplified relationship between magnetic flux and phase current in the air gap, several new windings for modular and dual 3-phase are made. In case of one inverter operation or faulty operation, the proposed model can have balanced 3-phase induced voltage whereas the conventional generator with modular winding has unbalanced induced voltage, which can be important issue in offshore generator. The model was applied into 6MW prototype machine with dual 3-phase. Using finite element analysis, induced voltage, inductance were investigated. The results show that the proposed modular winding can be applicable to dual inverter system with electrically balanced voltage.