• Title/Summary/Keyword: 6 MV photon

Search Result 234, Processing Time 0.037 seconds

Skin Dose Distributions with Spoiler of 6MV x-ray for Head and Neck Tumor (두경부암 치료를 위한 6MV X-선 산란판의 제작과 산란분포 측정)

  • Lee, Ho-Soo;Lee, Jong-Keol;Lee, Byung-Jun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.7 no.1
    • /
    • pp.176-184
    • /
    • 1995
  • It is very useful benefits to use the megavoltage photon beams in deep site tumor radiotherapy for skin sparing effects. But, In some cases of head and mock tumors, it is often necessary to use spoiler for rapid buildup on skin region. A spoiler with tissue equivalent material to be moved between the patients and the collimator can increase or control the skin dose and buildup region due to position and thickness of the spoiler was measured. Then, the effect of spoiler on skin dose and build up region in protruded tumor of head and neck was evaluated quantitatively. The measurements were abtained with PTW 2334 chamber (Markus type) on a polystylene phantom for 6MV x-ray from an accelerator.

  • PDF

Dose distribution at junctional area abutting X-ray and electron fields (X-선과 전자선의 인접조사에서 접합 조사면에서의 선량분포)

  • Yang, Kwang-Mo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.16 no.1
    • /
    • pp.91-99
    • /
    • 2004
  • Purpose : For the head and neck radiotherapy, abutting photon field with electron field is frequently used for the irradiation of posterior neck when tolerable dose on spinal cord has been reached. Materials and methods : Using 6 MV X-ray and 9 MeV electron beams of Clinac1800(Varian, USA) linear accelerator, we performed film dosimetry by the X-OMAT V film of Kodak in solid water phantom according to depths(0 cm, 1.5 cm, 3 cm, 5 cm). 6 MV X-ray and 9 MeV electron(1Gy) were exposes to 8cm depth and surface(SSD 100cm) of phantom. The dose distribution to the junction line between photon($10cm{\times}10cm$ field with block) and electron($15cm{\times}15cm$ field with block) fields was also measured according to depths(0 cm, 0.5 1.5 cm, 3 cm, 5 cm). Results : At the junction line between photon and electron fields, the hot spot was developed on the side of the photon field and a cold spot was developed on that of the electron field. The hot spot in the photon side was developed at depth 1.5 cm with 7 mm width. The maximum dose of hot spot was increased to $6\%$ of reference doses in the photon field. The cold spot in the electron side was developed at all measured depths(0.5 cm-3 cm) with 1-12.5 mm widths. The decreased dose in the cold spot was $4.5-30\%$ of reference dose in the electron field. Conclusion : When we make use of abutting photon field with electron field for the treatment of head and neck cancer we should consider the hot and cold dose area in the junction of photon and electron field according to location of tumor.

  • PDF

A Study on the Neutron Dose Distribution in Case of 10 MV X-rays Radiotherapy (10MV X선 방사선 치료 시 중성자 선량 분포에 관한 연구)

  • Park, Cheol-Soo;Lim, Cheong-Hwan;Jung, Hong-Ryang;Shin, Seong-Soo
    • Journal of radiological science and technology
    • /
    • v.31 no.4
    • /
    • pp.415-417
    • /
    • 2008
  • This study is to measure the radiation dose of neutrons generated by the particle accelerator during X-ray (photon) treatment with a neutron detection method by using CR-39, and to research how the generation of neutrons may incur problems associated with radiation doses for patient treatment when using high energy photons for cancer treatment as a clinical application. The findings are summarized as follows : The results showed that average 0.35mSv was measured with exposure of 1Gy photon in case of fast neutron, 0.65mSv with exposure of 2Gy photon, 1.82mSv exposure of 5Gy, 0.26mSv with exposure of 1Gy photon in case of thermal neutron, 0.56mSv with exposure of 2Gy photon, and 1.23mSv with exposure of 5Gy of photon. By measuring the occurrence of neutron by using Wedge Filter, it has been confirmed that the occurrence of neutrons increased when using Wedge Filter. The results also showed that more neutrons were detected over the existing experiments when using an SRS Cone requiring high doses of radiation. Total 2.85mSv neutrons were found on the average with exposure of 5Gy photon in case of fast neutron and 1.37mSv neutrons were found on the average with exposure of 5Gy photon in case of thermal neutron. During the general treatment, about 1.6 times more neutrons over 5Gy photon were found in case of fast neutron and about 1.12 time more neutrons over 5Gy photon were found in case of thermal neutron.

  • PDF

Analysis of dose from surface to near the buildup region in the therapeutic X-ray beam (표피로 부터 buildup 영역까지 흡수되는 암치료용 방사선의 선량분석)

  • Vahc, Young-Woo
    • Progress in Medical Physics
    • /
    • v.6 no.2
    • /
    • pp.41-50
    • /
    • 1995
  • The absorbed dose and contaminant electron distribution of therapeutic X-ray beam (15MV photon) was studied with a half blocked beams of 30$\times$30$\textrm{cm}^2$ and field size ranging from 5$\times$5 to 30$\times$30$\textrm{cm}^2$. For a 15MV photon beam energy, the value of the depth of dose maximum, d$_{max}$, gradually decrease with increasing field size from 5$\times$5 to 30$\times$30$\textrm{cm}^2$ due to mainly by contaminant electrons which are produced in the flattening filter and scattered by collimator jaws, tray holder〔Lucite〕, blocking block and air. The results suggest that separate dosimetry data should be kept for blocked and unblocked field. The inherence of the contaminant electrons to the open field depth of maximum dose can lead to mistaken results if attenuation measurements are made at that depth. A nurmerous contaminant electrons mainly were distributed as shape of corn in the central photon beam and their path length in the water were shorter than 30mm because of the electrons energy having around 6MeV. These results clearly appears that the substraction of scattered electrons (electrons and positrons) from the total depth dose curve not only lowers the absolute dose in the bulidup region and surface dose, it also causes a shift of d$_{max}$ to a deeper depth. In the terapeutic high energy photon beam, the absorbed dose near the buildup region is the combined result of incident contaminant electrons and phantom generated electronsrons.

  • PDF

Characteristics of Photon Beam through a Handmade Build-Up Modifier as a Substitute of a Bolus (Bolus를 대체하기 위해 자체 제작된 선량상승영역 변환기를 투과한 광자선의 특성)

  • Kim, Sung Joon;Lee, Seoung Jun;Moon, Su Ho;Seol, Ki Ho;Lee, Jeong Eun
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.225-232
    • /
    • 2014
  • We evaluated the effect of scatter on a build-up region based on the measured percent depth dose (PDD) of high-energy photon beams that penetrated a handmade build-up modifier (BM) as a substitute of bolus. BM scatter factors ($S_{BM}$) were calculated based on the PDDs of photon beams that penetrated through the BM. The calculated $S_{BM}$ values were normalized to 1 at the square field side (SFS) of 30 mm without a BM. For the largest SFS (200 mm), the SBM values for a 6-MV beam were 1.331, 1.519, 1.598, 1.641, and 1.657 for the corresponding BM thickness values. For a 10-MV beam, the $S_{BM}$ values were 1.384, 1.662, 1.825, 1.913, and 2.001 for the corresponding BM thickness values. The BM yielded 76% of the bolus efficiency. We expect BM to become useful devices for deep-set patient body parts to which it is difficult to apply a bolus.

Study on the Photoneutrons Produced in 15 MV Medical Linear Accelerators : Comparison of Three-Dimensional Conformal Radiotherapy and Intensity-Modulated Radiotherapy (15 MV 의료용 선형가속기에서 발생되는 광중성자의 선량 평가 - 3차원입체조형방사선치료와 세기조절방사선치료의 비교 -)

  • Yang, Oh-Nam;Lim, Cheong-Hwan
    • Journal of radiological science and technology
    • /
    • v.35 no.4
    • /
    • pp.335-343
    • /
    • 2012
  • Intensity-modulated radiotherapy(IMRT) have the ability to provide better dose conformity and sparing of critical normal tissues than three-dimensional radiotherapy(3DCRT). Especially, with the benefit of health insurance in 2011, its use now increasingly in many modern radiotherapy departments. Also the use of linear accelerator with high-energy photon beams over 10 MV is increasing. As is well known, these linacs have the capacity to produce photonueutrons due to photonuclear reactions in materials with a large atomic number such as the target, flattening filters, collimators, and multi-leaf collimators(MLC). MLC-based IMRT treatments increase the monitor units and the probability of production of photoneutrons from photon-induced nuclear reactions. The purpose of this study is to quantitatively evaluate the dose of photoneutrons produced from 3DCRT and IMRT technique for Rando phantom in cervical cancer. We performed the treatment plans with 3DCRT and IMRT technique using Rando phantom for treatment of cervical cancer. An Rando phantom placed on the couch in the supine position was irradiated using 15 MV photon beams. Optically stimulated luminescence dosimeters(OSLD) were attached to 4 different locations (abdomen, chest, head and neck, eyes) and from center of field size and measured 5 times each of locations. Measured neutron dose from IMRT technique increased by 9.0, 8.6, 8.8, and 14 times than 3DCRT technique for abdomen, chest, head and neck, and eyes, respectively. When using IMRT with 15 MV photonbeams, the photoneutrons contributed a significant portion on out-of-field. It is difficult to prevent high energy photon beams to produce the phtoneutrons due to physical properties, if necessary, It is difficult to prevent high energy photon beams to produce the phtoneutrons due to physical properties, if necessary, it is need to provide the additional safe shielding on a linear accelerator and should therefore reduce the out-of-field dose.

Development of a Beam Source Modeling Approach to Calculate Head Scatter Factors for a 6 MV Unflattened Photon Beam

  • Park, So-Yeon;Choi, Noorie;Jang, Na Young
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.137-144
    • /
    • 2021
  • Purpose: This study aimed to investigate the accuracy of head scatter factor (Sc) by applying a developed multi-leaf collimator (MLC) scatter source model for an unflattened photon beam. Methods: Sets of Sc values were measured for various jaw-defined square and rectangular fields and MLC-defined square fields for developing dual-source model (DSM) and MLC scatter model. A 6 MV unflattened photon beam has been used. Measurements were performed using a 0.125 cm3 cylindrical ionization chamber and a mini phantom. Then, the parameters of both models have been optimized, and Sc has been calculated. The DSM and MLC scatter models have been verified by comparing the calculated values to the three Sc set measurement values of the jaw-defined field and the two Sc set measurement values of MLC-defined fields used in the existing modeling, respectively. Results: For jaw-defined fields, the calculated Sc using the DSM was consistent with the measured Sc value. This demonstrates that the DSM was properly optimized and modeled for the measured values. For the MLC-defined fields, the accuracy between the calculated and measured Sc values with the addition of the MLC scatter source appeared to be high, but the only use of the DSM resulted in a significantly bigger differences. Conclusions: Both the DSM and MLC models could also be applied to an unflattened beam. When considering scattered radiation from the MLC by adding an MLC scatter source model, it showed a higher degree of agreement with the actual measured Sc value than when using only DSM in the same way as in previous studies.

The Physical Penumbra of the 6MV X-ray (6MV 방사선의 물리학적 Penumbra)

  • Cho Moon-June;Kang Wee-Saing
    • Radiation Oncology Journal
    • /
    • v.9 no.2
    • /
    • pp.333-336
    • /
    • 1991
  • High energy Photon beam has a sharp beam margin due to a less side scatter and the other things. But there still remains a penumbra where the dose changes rapidly in the region near the edge of a radiation beam, although it is short in width. It is suggested that the width of the penumbra depends on the source size, distance from source to diaphragm, source to skin distance, and depth in tissue. However, it is also supposed that the other factors influence the penumbra width. In this paper, we investigate changes of the physical penumbra widths according to various field sizes and depths, by using the three dimensional dosimetry system. As a result, we found that as field size and depth increase, the physical penumbra width also increases.

  • PDF

Skin Dose Distribution with Spoiler of 6 MV X-ray for Head and Neck Tumor (두경부암 치료를 위한 6 MV X-선 산란판의 제작과 산란분포 측정)

  • Lee Kyung-Ja;Chu Sung Sil
    • Radiation Oncology Journal
    • /
    • v.14 no.4
    • /
    • pp.339-345
    • /
    • 1996
  • Purpose : This study was performed for adequate irradiating tumor area when 6 MV linear accerelator photon was used to treat the head and neck tumor. The skin surface dose and maximum build-up region was measured by using a spoiler which was located between skin surface and collimator. Methods : A spoiler was made of tissue equivalent material and the skin surface dose and maximum build-up region was measured varing with field size, thickness of spoiler and interval between skin and collimator. The results of skin surface dose and maximum build-up dose was represented as a build-up ratio and it was compared with dose distribution by using a bolus. Results : The skin surface dose was increased with appling spoiler and decreased by distance of the skin-spoiler separation. The maxium build-up region was 1.5 cm below the skin surface and it was markedly decreased near the skin surface. By using a 1.0-cm thickness spoiler, Dmax moved to 5, 10.2, 12.3 13.9 and 14.8 mm from the skin surface by separation of the spoiler from the skin 0, 5, 10, 15. 20 cm, respectively. Conclusion : The skin surface dose was increased and maximum build-up region was moved to the surface by using a spoiler. Therefore spoiler was useful in treating by high energy photon in the head and neck tumor.

  • PDF

Dosimetric Characteristics of Dual Photon Energy Using Independent Collimator Jaws (고에너지 선형가속기의 Independent Collimator를 이용한 비대칭 방사선 조사시 방사선량 결정에 미치는 요인에 관한 연구)

  • Kim Jeung-kee;Choi Young-Min;Lee Hyung-Sik;Hur Won-Joo
    • Radiation Oncology Journal
    • /
    • v.14 no.3
    • /
    • pp.237-244
    • /
    • 1996
  • Purpose : The accurate dosimetry of independent collimator equipped for 6MV and 15MV X-ray beam was investigated to search for the optimal correction factor. Materials and Methods : The field size factors, beam quality and dose distribution were measured by using 6MV, 15MV X-ray Field size factors were measured from $3{\times}3cm^2$ to $35{\times}35cm^2$ by using 0.6cc ion chamber (NE 2571) at Dmax. Beam qualities were measured at different field sizes, off-axis distances and depths. Isodose distributions at different off-axis distance using $10\times10cm^2$ field were also investigated and compared with symmetric field. Result: 1) Relative field size factors was different along lateral distance with maximum changes in $3.1\%$ for 6MV and $5\%$ for 15MV. But the field size factors of asymmetric fields were identical to the modified central-axis values in symmetric field, which corrected by off-axis ratio at Dmax. 2) The HVL and PDD was decreased by increasing off-axis distance. PDD was also decreased by increasing depth For field size more than $5{\times}cm^2$ and depth less than 15cm, PDD of asymmetric field differs from that of symmetric one ($0.5\~2\%$ for 6MV and $0.4\~1.4\%$ for 15MV). 3) The measured isodose curves demonstrate divergence effects and reduced doses adjacent to the edge close to the flattening filter center was also observed. Conclusion . When asymmetric collimator is used, calculation of MU must be corrected with off-axis and PDD with a caution of underdose in central axis.

  • PDF