• Title/Summary/Keyword: 6 Degree of Freedom

Search Result 433, Processing Time 0.027 seconds

A Study on the Electric-Hydraulic Position Control of Vertical Moving Plant (수직 이동부하의 전기-유압 위치제어에 관한 연구)

  • Shin, Kyoo-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2000.07e
    • /
    • pp.129-131
    • /
    • 2000
  • The moving vehicle with disturbances has the 6 degree of freedom motion in the pitching, Yawing, and rolling directions of two independent axes. The control system in such a moving vehicle has to perform disturbance rejection. This paper present PID controller with disturbance rejection function, low sensitivity filter and notch filter for bending frequency rejection. The performance of a designed system has been certified by the simulation and experiment and experiment results.

  • PDF

Human-Friendly Interfaces of a Robot Manipulator Control System for Handicapped Person

  • Lim, Soo-chul;Lee, Kyoobin;Kwon, Dong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.84.1-84
    • /
    • 2002
  • A Human-Robot-Interface(HRI) for the disabled Person is developed. $\textbullet$ HRI consists of the laser pointer '||'&'||' USB camera and pressure sensor. $\textbullet$ HRI makes three degree of freedom. $\textbullet$ Three robot position control method with the Interface is presented. $\textbullet$ Experimental results show that user control the 6 DOF robot with the interface and control method.

  • PDF

Modified Empirical Formula of Dynamic Amplification Factor for Wind Turbine Installation Vessel (해상풍력발전기 설치선박의 수정 동적증폭계수 추정식)

  • Ma, Kuk-Yeol;Park, Joo-Shin;Lee, Dong-Hun;Seo, Jung-Kwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.846-855
    • /
    • 2021
  • Eco-friendly and renewable energy sources are actively being researched in recent times, and of shore wind power generation requires advanced design technologies in terms of increasing the capacities of wind turbines and enlarging wind turbine installation vessels (WTIVs). The WTIV ensures that the hull is situated at a height that is not affected by waves. The most important part of the WTIV is the leg structure, which must respond dynamically according to the wave, current, and wind loads. In particular, the wave load is composed of irregular waves, and it is important to know the exact dynamic response. The dynamic response analysis uses a single degree of freedom (SDOF) method, which is a simplified approach, but it is limited owing to the consideration of random waves. Therefore, in industrial practice, the time-domain analysis of random waves is based on the multi degree of freedom (MDOF) method. Although the MDOF method provides high-precision results, its data convergence is sensitive and difficult to apply owing to design complexity. Therefore, a dynamic amplification factor (DAF) estimation formula is developed in this study to express the dynamic response characteristics of random waves through time-domain analysis based on different variables. It is confirmed that the calculation time can be shortened and accuracy enhanced compared to existing MDOF methods. The developed formula will be used in the initial design of WTIVs and similar structures.

Evaluation of Inertial Interaction of a Multi-degree-of-freedom Structure during a Large-scale 1-g Shaking Table Test (대형 진동대 실험을 이용한 다자유도 구조물의 관성 상호작용 평가)

  • Chae, Jonghoon;Yoon, Hyungchul;Jung, Jongwon
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.6
    • /
    • pp.17-28
    • /
    • 2022
  • The effect of the soil-structure interaction (SSI) on has been recently evaluated in shaking table tests. However, most of these tests were conducted on single-degree-of-freedom (SDOF) superstructures and a single-pile. This study investigates the inertial interaction effect of a multi-degree-of-freedom (MDOF) superstructure system with a group piles on a large-scale shaking table test. Whereas the SDOF superstructure system shows a single-frequency amplification tendency, the MDOF superstructure system exhibited amplification tendencies of the acceleration phase and frequency responses for multiple frequencies. In addition, the amplification phenomenon between the footing and the column-type superstructure exceeded that between the footing and the wall-type superstructure, indicating a greater inertial interaction effect of the column-type superstructure. The relationship between shear force and inertial force, the relative vertical and horizontal displacements on the footing was figured out. Also, the ananlysis of dynamic p-y curve at each depth was conducted. In summary, the MDOF and SDOP superstructure systems exhibited different behaviors and the column-type superstructure exerted a higher interaction effect than the wall-type superstructure.

Assessment of velocity-acceleration feedback in optimal control of smart piezoelectric beams

  • Beheshti-Aval, S.B.;Lezgy-Nazargah, M.
    • Smart Structures and Systems
    • /
    • v.6 no.8
    • /
    • pp.921-938
    • /
    • 2010
  • Most of studies on control of beams containing piezoelectric sensors and actuators have been based on linear quadratic regulator (LQR) with state feedback or output feedback law. The aim of this study is to develop velocity-acceleration feedback law in the optimal control of smart piezoelectric beams. A new controller which is an optimal control system with velocity-acceleration feedback is presented. In finite element modeling of the beam, the variation of mechanical displacement through the thickness is modeled by a sinus model that ensures inter-laminar continuity of shear stress at the layer interfaces as well as the boundary conditions on the upper and lower surfaces of the beam. In addition to mechanical degrees of freedom, one electric potential degree of freedom is considered for each piezoelectric element layer. The efficiency of this control strategy is evaluated by applying to an aluminum cantilever beam under different loading conditions. Numerical simulations show that this new control scheme is almost as efficient as an optimal control system with state feedback. However, inclusion of the acceleration in the control algorithm increases practical value of a system due to easier and more accurate measurement of accelerations.

Development, implementation and verification of a user configurable platform for real-time hybrid simulation

  • Ashasi-Sorkhabi, Ali;Mercan, Oya
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1151-1172
    • /
    • 2014
  • This paper presents a user programmable computational/control platform developed to conduct real-time hybrid simulation (RTHS). The architecture of this platform is based on the integration of a real-time controller and a field programmable gate array (FPGA).This not only enables the user to apply user-defined control laws to control the experimental substructures, but also provides ample computational resources to run the integration algorithm and analytical substructure state determination in real-time. In this platform the need for SCRAMNet as the communication device between real-time and servo-control workstations has been eliminated which was a critical component in several former RTHS platforms. The accuracy of the servo-hydraulic actuator displacement control, where the control tasks get executed on the FPGA was verified using single-degree-of-freedom (SDOF) and 2 degrees-of-freedom (2DOF) experimental substructures. Finally, the functionality of the proposed system as a robust and reliable RTHS platform for performance evaluation of structural systems was validated by conducting real-time hybrid simulation of a three story nonlinear structure with SDOF and 2DOF experimental substructures. Also, tracking indicators were employed to assess the accuracy of the results.

Experimental identification of the six DOF C.G.S., Algeria, shaking table system

  • Airouche, Abdelhalim;Bechtoula, Hakim;Aknouche, Hassan;Thoen, Bradford K.;Benouar, Djillali
    • Smart Structures and Systems
    • /
    • v.13 no.1
    • /
    • pp.137-154
    • /
    • 2014
  • Servohydraulic shaking tables are being increasingly used in the field of earthquake engineering. They play a critical role in the advancement of the research state and remain one of the valuable tools for seismic testing. Recently, the National Earthquake Engineering Research Center, CGS, has acquired a 6.1m x 6.1 m shaking table system which has a six degree-of-freedom testing capability. The maximum specimen mass that can be tested on the shaking table is 60 t. This facility is designed specially for testing a complete civil engineering structures, substructures and structural elements up to collapse or ultimate limit states. It can also be used for qualification testing of industrial equipments. The current paper presents the main findings of the experimental shake-down characterization testing of the CGS shaking table. The test program carried out in this study included random white noise and harmonic tests. These tests were performed along each of the six degrees of freedom, three translations and three rotations. This investigation provides fundamental parameters that are required and essential while elaborating a realistic model of the CGS shaking table. Also presented in this paper, is the numerical model of the shaking table that was established and validated.

Rotational tolerances of a titanium abutment in the as-received condition and after screw tightening in a conical implant connection

  • Prisco, Rosario;Troiano, Giuseppe;Laino, Luigi;Zhurakivska, Khrystyna
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.6
    • /
    • pp.343-350
    • /
    • 2021
  • PURPOSE. The success of an implant-prosthetic rehabilitation is influenced by good implant health and an excellent implant-prosthetic coupling. The stability of implant-prosthetic connection is influenced by the rotational tolerance between anti-rotational features on the implant and those on the prosthetic component. The aim of this study is to investigate the rotational tolerance of a conical connection implant system and its titanium abutment counterpart, in various conditions. MATERIAL AND METHODS. 10 preparable titanium abutments, having zero-degree angulation (MegaGen, Daegu, Korea) with an internal 5-degree conical connection, and 10 implants (MegaGen, Daegu, Korea) were used. Rotational tolerance between the connection of implant and titanium abutments was measured through the use of a tridimensional optics measuring system (Quick Scope QS250Z, Mitutoyo, Kawasaki, Japan) in the as-received condition (Time 0), after securing with a titanium screw tightening at 35 Ncm (Time 1), after tightening 4 times at 35 Ncm (Time 2), after tightening one more time at 45 Ncm (Time 3), and after tightening another 4 times at 45 Ncm (Time 4). RESULTS. The group "Time 0" had the lowest values of rotational freedom (0.22 ± 0.76 degrees), followed by the group Time 1 (0.46 ± 0.83 degrees), the group Time 2 (1.01 ± 0.20 degrees), the group Time 3 (1.30 ± 0.85 degrees), and the group Time 4 (1.49 ± 0.17 degrees). CONCLUSION. The rotational tolerance of a conical connection is low in the "as received" condition but increases with repetitive tightening and with application of a torque greater than 35 Ncm.

A Study on the Relationship between Response Spectrum and Seismic Fragility Using Single Degree of Freedom System (단자유도 해석모델을 활용한 응답스펙트럼과 지진취약도 곡선과의 관계에 대한 연구)

  • Park, Sangki;Cho, Jeong-rae;Cho, Chang-beck;Lee, JinHyuk;Kim, Dong-Chan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.6
    • /
    • pp.245-252
    • /
    • 2023
  • In general, the design response spectrum in seismic design codes is based on the mean-plus-one-standard deviation response spectrum to secure high safety. In this study, response spectrum analysis was performed using seismic wave records adopted in domestic horizontal design spectrum development studies, while three response spectra were calculated by combining the mean and standard deviation of the spectra. Seismic wave spectral matching generated seismic wave sets matching each response spectrum. Then, seismic fragility was performed by setting three damage levels using a single-degree-of-freedom system. A correlation analysis was performed using a comparative analysis of the change in the response spectrum and the seismic fragility concerning the three response spectra. Finally, in the case of the response spectrum considering the mean and standard deviation, like the design response spectrum, the earthquake load was relatively high, indicating that conservative design or high safety can be secured.

Response transformation factors for deterministic-based and reliability-based seismic design

  • Bojorquez, Eden;Bojorquez, Juan;Ruiz, Sonia E.;Reyes-Salazar, Alfredo;Velazquez-Dimas, Juan
    • Structural Engineering and Mechanics
    • /
    • v.46 no.6
    • /
    • pp.755-773
    • /
    • 2013
  • One of the main requirements of the seismic design codes must be its easy application by structural engineers. The use of practically-applicable models or simplified models as single-degree-of-freedom (SDOF) systems is a good alternative to achieve this condition. In this study, deterministic and probabilistic response transformation factors are obtained to evaluate the response in terms of maximum ductility and maximum interstory drifts of multi-degree-of-freedom (MDOF) systems based on the response of equivalent SDOF systems. For this aim, five steel frames designed with the Mexican City Building Code (MCBC) as well as their corresponding equivalent SDOF systems (which represent the characteristics of the frames) are analyzed. Both structural systems are subjected to ground motions records. For the MDOF and the simplified systems, incremental dynamic analyses IDAs are developed in first place, then, structural demand hazard curves are obtained. The ratio between the IDAs curves corresponding to the MDOF systems and the curves corresponding to the simplified models are used to obtain deterministic response transformation factors. On the other hand, demand hazard curves are used to calculate probabilistic response transformation factors. It was found that both approaches give place to similar results.