• Title/Summary/Keyword: 6 DOF simulation

Search Result 200, Processing Time 0.039 seconds

Tracking Control of 6-DOF Shaking Table with Bell Crank Structure (벨 크랭크 구조를 가지는 6 자유도 진동 시험기의 추적 제어)

  • Jeon, Duek-Jae;Park, Sung-Ho;Park, Young-Jin;Park, Youn-Sik;Kim, Hyoung-Eui
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.306-309
    • /
    • 2005
  • This parer describes the tracking control simulation of 6-DOF shaking table with a bell crank structure, which converts the direction of reciprocating movements. For the Joint coordinate-based control which uses lengths of each actuator, the trajectory conversion process inverse kinematics is performed. Applying the Newton-Euler approach, the dynamic equation of the shaking table is derived. To cope with nonlinear problems, time-delay control(TDC) is considered, which has been noted for its exceptional robustness to parameter uncertainties and disturbance, in addition to steady-state accuracy and computational efficiency. If the nominal model is equal to the real system, joint coordinate-based control can be very efficient. However, manufacturing tolerances installation errors and link offsets contaminate the nominal values of the kinematic parameters used in the kinematic model of the shaking table. To compensate differences between the nominal model and the real system. the joint coordinate-based control using acceleration feedback in the Cartesian coordinate space is proposed.

  • PDF

Multi-axial Vibration Test on MAST System with Field Data (국내도로 주행 시험을 통한 6축 진동시험 방법에 관한 연구)

  • Kim, Chan-Jung;Bae, Chul-Yong;Lee, Bang-Hyun;Kwon, Seong-Jin;Na, Byung-Chul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.7 s.112
    • /
    • pp.704-711
    • /
    • 2006
  • Vibration test on MAST(multi axial simulation table) system has several advantage over one-axial vibration test that could simulate 6-DOF, 3-axial translation and 3-axial moment, at the same time. Since field vibration motion can be fully represented with 6-DOF, multi-axial vibration test on vehicle component is widely conducted in technical leading companies to make sure its fatigue performance in vibration environment. On the way to fulfill the process, editing technique of obtained field data is key issue to success a reliable vibration testing with MAST system. Since the original signals are not only too large to fulfill it directly, but all of the measured data is not guarantee its convergency on generating its driving files, editing technique of the original signals are highly required to make some events that should meet the equal fatigue damage on the target component In this paper, key technique on editing a field data feasible for MAST system is described based on energy method in vibration fatigue. To explain its technique explicitly, author first introduced a process on field data acquisition of two vehicle component and then, representing events are produced to keep up with the editing strategy about a energy method. In the final chapter, a time information regarding a vibration test on MAST system is derived from the energy data which is critical information to perform a vibration test.

MAST Vibration on MAST System with Field Data (국내도로 주행 시험을 통한 6축 진동시험 방법에 관한 연구)

  • Kim, Chan-Jung;Bae, Chul-Yong;Lee, Bong-Hyun;Kwon, Seong-Jin;Na, Byung-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.764-769
    • /
    • 2006
  • Vibration test on MAST(multi axial simulation table) system has several advantage over one-axial vibration test that could simulate 6-DOF, 3-axial translation and 3-axial moment, at the same time. Since field vibration motion can be fully represented with 6-DOF, multi-axial vibration test on vehicle component is widely conducted in technical leading companies to make sure its fatigue performance in vibration environment. On the way to fulfill the process, editing technique of obtained field data is key issue to success a reliable vibration testing with MAST system. Since the original signals are not only too large to fulfill it directly, but all of the measured data is not guarantee its convergency on generating its driving files, editing technique of the original signals are highly required to make some events that should meet the equal fatigue damage on the target component In this paper, key technique on editing a field data feasible for MAST system is described based on energy method in vibration fatigue. To explain its technique explicitly, author first introduced a process on field data acquisition of two vehicle component and then, representing events are produced to keep up with the editing strategy about a energy method. In the final chapter, a time information regarding a vibration test on MAST system is derived from the energy data which is critical information to perform a vibration test.

  • PDF

Performance Prediction for Plenoptic Microscopy Under Numerical Aperture Unmatching Conditions (수치 구경 불일치 플렌옵틱 현미경 성능 예측 방안 연구)

  • Ha Neul Yeon;Chan Lee;Seok Gi Han;Jun Ho Lee
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.1
    • /
    • pp.9-17
    • /
    • 2024
  • A plenoptic optical system for microscopy comprises an objective lens, tube lens, microlens array (MLA), and an image sensor. Numerical aperture (NA) matching between the tube lens and MLA is used for optimal performance. This paper extends performance predictions from NA matching to unmatching cases and introduces a computational technique for plenoptic configurations using optical analysis software. Validation by fabricating and experimenting with two sample systems at 10× and 20× magnifications resulted in predicted spatial resolutions of 12.5 ㎛ and 6.2 ㎛ and depth of field (DOF) values of 530 ㎛ and 88 ㎛, respectively. The simulation showed resolutions of 11.5 ㎛ and 5.8 ㎛, with DOF values of 510 ㎛ and 70 ㎛, while experiments confirmed predictions with resolutions of 11.1 ㎛ and 5.8 ㎛ and DOF values of 470 ㎛ and 70 ㎛. Both formula-based prediction and simulations yielded similar results to experiments that were suitable for system design. However, regarding DOF values, simulations were closer to experimental values in accuracy, recommending reliance on simulation-based predictions before fabrication.

A Study on the Circular Error Probability of Short-Range Rocket with Parachute (낙하산을 갖는 단거리 발사체의 오차분석)

  • 김찬수;조요한
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.218-225
    • /
    • 1999
  • This paper contains the computational simulation of a free rocket with a parachute and the development of a firing table for each range. To obtain the trajectory of the rocket, 6 DOF model of rocket with parachute was generated and the wind tunnel test was done for the input parameters. Good agreement was obtained between the analysis of trajectory and the flight test result. Also the trajectory error analysis was performed by the Monte Carlo simulation. As a result of simulation, the CEP(Circular Error Probability) of the firing table was calculated.

  • PDF

Design of Trajectory Following Controller for Parafoil Airdrop System (패러포일 투하 시스템의 궤적 추종 제어기의 설계)

  • Yang, Bin;Choi, Sun-Young;Lee, Joung-Tae;Lim, Dong-Keun;Hwang, Chung-Won;Park, Seung-Yub
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.3
    • /
    • pp.215-222
    • /
    • 2014
  • In this paper, parafoil airdrop system has been designed and analyzed. 6-degrees of freedom (6-DOF) model of the parafoil system is set up. Nonlinear model predictive control (NMPC) and Proportion integration differentiation (PID) methods were separately applied to adjust the flap yaw angle. Compared the results of setting time and overshoot time of yaw angle, it is found that the of yaw angle is more stable by using PID method. Then, trajectory following controller was designed based on the simulation results of trajectory following effects, which was carried out by using MATLAB. The lateral offset error of parafoil trajectory can be eliminated by its lateral deviation control. The later offset deviation reference was obtained by the interpolation of the current planning path. Moreover, using the designed trajectory, the trajectory following system was simulated by adding the wind disturbances. It is found that the simulation result is highly agreed with the designed trajectory, which means that wind disturbances have been eliminated with the change of yaw angle controlled by PID method.

Disturbance rejection and performance improvement in a moving vehicle

  • Shin, Kyoo-Jae;Kim, Go-Do;Kwon, Young-Ahn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.223-226
    • /
    • 1996
  • The moving vehicle with disturbances has the 6 dof motion in the pitching, yawing and rolling directions of two independent axes. The control system in such a moving vehicle has to perform disturbance rejection well. The paper presents PID controller with disturbance rejection function, low sensitivity filter and notch the bending frequency rejection. The performance of a designed system has been certified by the simulation and experiment results.

  • PDF

High Speed Controller for Haptic System (촉각장치 구동용 고속제어기)

  • 김동옥
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.61-65
    • /
    • 2000
  • In this paper We have developed the high-speed controller for haptic control. The proposed controller is based on the PCI/FPGA technology which can calculate the real position and transmit the force data to device rapidly. The haptic system is composed of 6DOF force display device high-speed controller. The developed system will be used on constructing the dynamical virtual environment. To show the efficiency of our system we designed simulation program of force-reflecting. As the result of the experiment we found that the controller has much higher resolution than some other controller It is so efficient in a 1 PC-based system with 1[kHz] haptic interrupt cycle.

  • PDF

Interactive Dynamic Simulation Schemes for Articulated Bodies through Haptic Interface

  • Son, Wook-Ho;Kim, Kyung-Hwan;Jang, Byung-Tae;Choi, Byung-Tae
    • ETRI Journal
    • /
    • v.25 no.1
    • /
    • pp.25-33
    • /
    • 2003
  • This paper describes interactive dynamic simulation schemes for articulated bodies in virtual environments, where user interaction is allowed through a haptic interface. We incorporated these schemes into our dynamic simulator I-GMS, which was developed in an object-oriented framework for simulating motions of free bodies and complex linkages, such as those needed for robotic systems or human body simulation. User interaction is achieved by performing push and pull operations with the PHANToM haptic device, which runs as an integrated part of I-GMS. We use both forward and inverse dynamics of articulated bodies for the haptic interaction by the push and pull operations, respectively. We demonstrate the user-interaction capability of I-GMS through on-line editing of trajectories for 6-dof (degrees of freedom) articulated bodies.

  • PDF

Parameter estimation of a single turbo-prop aircraft dynamic model (단발 터어보프롭 항공기 동적 모델의 파라메터추정)

  • Lee, Hwan;Lee, Sang-Kee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.1
    • /
    • pp.38-44
    • /
    • 1998
  • The modified maximum likelihood estimation method is used to estimate the nondimensional aerodynamic derivatives of a single turbo-prop aircraft at a specified flight condition for the best deduction of the dynamic characteristics. In wind axes the six degree of freedom equations are algebraically linearized so that the linear state equation contains aerodynamic derivatives in a state-space form and is used in the maximum likelihood method. The simulated data added with the measurement noise is used as a flight test data which is necessary to the estimation of nondimensional aerodynamic derivatives. It is obtained by implementing the 6-DOF nonlinear flight simulation. In the flight simulation, the effects of several control input types, control deflection amplitudes, and the turbulence intensities on the statistical convergence criteria are also examined and quantitative analysis of the results is discussed.

  • PDF