• Title/Summary/Keyword: 6 DOF Articulated Robot Manipulators

Search Result 3, Processing Time 0.017 seconds

A New Method far Singularity Avoidance of 6 DOF Articulated Robot Manipulators using Speed Limiting algorithm (최대속도제한 알고리즘을 이용한 6축 수직다관절 로봇의 새로운 특이점 회피방법 개발)

  • 최은재;정원지;홍대선;서영교;홍형표
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.454-457
    • /
    • 2002
  • This paper presents a new motion control for singularity avoidance in 6 DOF articulated robot manipulators, based on a speed limiting algorithm for joint positions and velocities. For a given task, the robot is controlled so that the joints move with acceptable velocities and positions within the reachable range of each joint by considering the velocity limit. The proposed method was verified using MATLAB-based simulations.

  • PDF

Development of A New Efficient Method for Controlling Robot Motion at and near Singularities (특이점 부근의 로봇운동을 효과적으로 제어하기 위한 새로운 방법 개발)

  • 정원지;최은재;홍대선;서영교;홍형표
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.6
    • /
    • pp.31-37
    • /
    • 2002
  • This paper presents a new motion control strategy for singularity avoidance in 6 DOF articulated robot manipulators, based on a speed limiting algorithm for joint positions and velocities. For a given task, the robot is controlled so that the joints move with acceptable velocities and positions within the reachable range of each joint by considering the velocity limit. This paper aims at the development of a new efficient method to control robot motion near and at singularities. The proposed method has focused on generating the optimal joint trajectory for a Cartesian end-effector path within the speed limit of each joint by using the speed limit avoidance as well as the acceleration/deceleration scheme. The proposed method was verified using MATLAB-based simulations.

A Study on Real Time Working Path Control of Vertical Articulated Robot for Forging Process Automation in High Temperature Environments (고온 환경 단조공정 자동화를 위한 수직다관절 로봇의 실시간 작업경로 제어에 관한 연구)

  • Jo, Sang-Young;Kim, Min-Seong;Do, Ki-Hoon;Han, Sung-Hyun;Ha, Un-Tae;Shim, Hyun-Suk;Lim, Chang-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.1
    • /
    • pp.34-48
    • /
    • 2017
  • This study proposes a new approach to control a trajectory control of vertical type articulated robot arm with six revolution joints by computed torque method for manufacturing process automation. The proposed control scheme takes advantage of the properties of the fuzzy controllers. The proposed method is suitable to control of the trajectory and path control in cartesian space for vertical type articulated robot manipulator for forging manufacturing process automation. The results is illustrated that the proposed fuzzy computed torque controller is more stable and robust than the conventional computed torque controller. This study is included with an analytical methodology of inverse kinematic computation for 6 DOF manipulators. And an intelligent PID based on feed forward fuzzy control structure is applied to control the working path control with disturbances caused by uncertainty parameters of the manipulator dynamic model. Lastly, the validity of proposed is verified by simulations and experiments.