• Title/Summary/Keyword: 5HT2/1C receptors

Search Result 19, Processing Time 0.03 seconds

Pharmacokinetics and Bioavailability of New Synthetic 5-HT2C Agonists, KKHQ80109 and KKHQ80114, in Sprague-Dawley Rats

  • Im, Hye-Yeon;Choo, Hyun-Ah;Pae, Ae-Nim;Kwon, Oh-Seung
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.5
    • /
    • pp.327-331
    • /
    • 2009
  • 5-HT$_{2C}$ receptors have been considered as therapeutic targets for the treatment of various central nervous system disorders such as depression, anxiety, epilepsy, schizophrenia and sleep disorders. We chemically synthesized KKHQ80109 (K09) and KKHQ80114 (K14), selective 5-HT$_{2C}$ agonists, with the purpose of developing therapeutic agents for the treatment of obesity. The objective of this work is to investigate pharmacokinetic parameters and bioavailability of K09 and K14 in rats given orally or intravenously. Oral administration of 20 mg/kg K09 results in 4.11 hr of the terminal half-life and 89.16 ng/mL of C$_{max}$ at 5.00 hr (T$_{max}$). The terminal half-life of K14 was 3.83 hr with 215.81 ng/mL of C$_{max}$ at 3.33 hr (T$_{max}$) after oral dosing of 20 mg/kg K14, indicating that K14 is more rapidly absorbed than K09. Bioavailability showed 0.17-0.21 for K09 and 0.19-0.23 for K14. Urinary excretion of parent K09 and K14 was less than 1%, indicating that K09 and K14 undergo very extensive hepatic metabolism.

Involvement of Serotonergic Mechanism in the Nucleus Tractus Solitarius for the Regulation of Blood Pressure and Heart Rate of Rats (흰쥐의 혈압 및 심박동수 조절에 대하여 Nucleus Tractus Solitarius 부위의 Serotonin성 기전의 역할)

  • Lee, Yong-Kyu;Hong, Ki-Whan;Yoon, Jae-Soon
    • The Korean Journal of Pharmacology
    • /
    • v.25 no.1
    • /
    • pp.1-11
    • /
    • 1989
  • In this study, it was aimed to investigate the role of serotonergic neurotransmission in nucleus tractus solitarius (NTS) for the central regulation of blood pressure and heart rate and its involvement in baroreceptor reflex activation in rats. A microinjection of 5-hydroxytryptamine (5-HT) into the NTS produced decreases in blood pressure and heart rate. Maximal decreases were $34.4{\pm}1.6$ mmHg and $41.7{\pm}10.2$ beats per min by 300 pmol of 5-HT. Microinjections of ${\alpha}-methylnor-adrenaline$ $({\alpha}-MNE)$ and clonidine manifested similar decreases in blood pressure and heart rate. The hypotensive and bradycardial effects of 5-HT were blocked by previous applications of 5-HT antagonists, ritanserin, methysergide and ketanserin into the NTS, respectively. By pretreatment with reserpine and 6-hydroxydopamine (6-OHDA, i.c.v.), both hypotensive and bradycardial effects of 5-HT were significantly attenuated. Pretreatment with 5, 7-dihydroxytryptamine (5,7-DHT, i.c.v.) enhanced the hypotensive and bradycardial effects of 5-HT. Similarly, following pretreatment with 6-OHDA, the effects of clonidine were increased. Pretreatment either with 5,7-DHT or 6-OHDA significantly attenuated the sensitivity of baroreflex produced either by phenylephrine or by sodium nitroprusside. When either 5,7-DHT or 6-OHDA was injected into the NTS $(5,7-DHT;\;8{\mu}g\;6-OHDA;\;10{\mu}g)$, both of the baroreflex sensitivities were impaired. In the immunohistochemical study, the injection of 6-OHDA into the the NTS led to reduction of axon terminal varicosity, however, the injection did not reduce the numbers of catecholaminergic cell bodies. Likewise, when 5,7-DHT was injected into the NTS, the varicosity of serotonergic axon terminals was markedly reduced. Based on these results, it is suggested that (1) stimulation of serotonergic receptors in the NTS leads to decreases in blood pressure and heart rate as observed with the stimulation of catecholaminergic system, (2) both serotonergic and catecholaminergic receptors may be located postsynaptically, and (3) the serotonergic neurons as well as catecholaminergic neurons may have a close relevance for the activation of baroreflex.

  • PDF

The Inhibitory Effects of Korean Red Ginseng Saponins on 5- HT3A Receptor Channel Activity Are Coupled to Anti-Nausea and Anti-Vomiting Action

  • Kim Jong-Hoon;Lee Byung-Hwan;Jeong Sang Min;Nah Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.29 no.1
    • /
    • pp.37-43
    • /
    • 2005
  • We performed in vitro and in vivo studies to know whether the inhibitory effects of ginsenosides on $5-HT_{3A}$ receptor channel acctivity are coupled to anti-nausea and anti-vomiting action. In vitro study, we investigated the effect of compound K (CK) and M4, which are ginsenoside metabolites, on human $5-HT_{3A}$ receptor channel activity expressed in Xenopus oocytes using two-electrode voltage clamp technique. Treatment of CK or M4 themselves had no effect in both oocytes injected with $H_2O\;and\;5-HT_{3A}$ receptor cRNA. In oocytes injected with $5- HT_{3A}$ receptor cRNA, M4 treatment inhibited more potently 5-HT-induced inward peak current $(I_{5-HT})$ than CK with dose-dependent and reversible manner. The half-inhibitory concentrations $(IC_{50})$ of CK and M4 were $36.9\;\pm\;10.1\;and\;7.3\;\pm\;2.2\;{\mu}M$, respectively. The inhibition of $I_{5-HT}$ by M4 was non-competitive and voltage-independent. These results indicate that M4 might regulate $5-HT_{3A}$ receptors. In vivo experiments, injection of cisplatin (7.5 mg/kg, i.v.) induced both nausea and vomiting with 1 h latency. These episodes reached to peak after 2 h and persisted for 4 h. Pre-treatment of GTS (500 mg/kg, p.o.) significantly reduced cisplatin-induced nausea and vomiting by $51\;\pm\;8.4\;and\;48.8\;\pm\;6.4\%$ during 4 h compared to GIS­untreated group, respectively. These results show the possibility that in vitro inhibition of $5-HT_{3A}$ receptor channel activity by ginsenosides might be coupled to in vivo anti-emetic activity.

YKP1447, A Novel Potential Atypical Antipsychotic Agent

  • Dong, Seon-Min;Kim, Yong-Gil;Heo, Joon;Ji, Mi-Kyung;Cho, Jeong-Woo;Kwak, Byong-Sung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.2
    • /
    • pp.71-78
    • /
    • 2009
  • (S)-Carbamic acid 2-[4-(4-fluoro-benzoyl)-piperidin-1-yl]-1-phenyl-ethyl ester hydrochloride (YKP1447) is a novel "atypical" antipsychotic drug which selectively binds to serotonin (5-$HT_{2A}$, Ki=0.61 nM, 5-$HT_{2C}$, Ki=20.7 nM) and dopamine ($D_2$, Ki=45.9 nM, $D_3$, Ki=42.1 nM) receptors with over $10\sim100$-fold selectivity over the various receptors which exist in the brain. In the behavioral studies using mice, YKP1447 antagonized the apomorphine-induced cage climbing ($ED_{50}$=0.93 mg/kg) and DOI-induced head twitch ($ED_{50}$=0.18 mg/kg) behavior. In the dextroamphetamine-induced hyperactivity and conditioned avoidance response (CAR) paradigm in rats, YKP1447 inhibited the hyperactivity induced by amphetamine ($ED_{50}$=0.54 mg/kg) and the avoidance response ($ED_{50}$=0.48 mg/kg); however, unlike other antipsychotic drugs, catalepsy was observed only at much higher dose ($ED_{50}$=68.6 mg/kg). Based on the CAR and catalepsy results, the therapeutic index (TI) value for YKP1447 is over 100 (i.p.). These results indicate that YKP1447 has an atypical profile and less undesirable side effects than currently available drugs.

Anti-inflammatory and antinociceptive effects of sitagliptin in animal models and possible mechanisms involved in the antinociceptive activity

  • Valiollah Hajhashemi;Hossein Sadeghi;Fatemeh Karimi Madab
    • The Korean Journal of Pain
    • /
    • v.37 no.1
    • /
    • pp.26-33
    • /
    • 2024
  • Background: Sitagliptin is an antidiabetic drug that inhibits dipeptidyl peptidase-4 enzyme. This study aimed to investigate the antinociceptive and anti-inflammatory effects of sitagliptin in formalin and carrageenan tests and determine the possible mechanism(s) of its antinociceptive activity. Methods: Male Swiss mice (25-30 g) and male Wistar rats (180-220 g) were used for formalin and carrageenan tests, respectively. In the formalin test, paw licking time and in the carrageenan test, paw thickness were considered as indexes of pain behavior and inflammation respectively. Three doses of sitagliptin (2.5, 5, and 10 mg/kg) were used in these tests. Also, several antagonists and enzyme inhibitors were used to evaluate the role of adrenergic, serotonergic, dopaminergic, and opioid receptors as well as the NO/cGMP/KATP pathway in the antinociceptive effect of sitagliptin (5 mg/kg). Results: Sitagliptin showed significant antinociceptive and anti-inflammatory effects in the formalin and carrageenan tests respectively. In the carrageenan test, all three doses of sitagliptin significantly (P < 0.001) reduced paw thickness. Pretreatment with yohimbine, prazosin, propranolol, naloxone, and cyproheptadine could not reverse the antinociceptive effect of sitagliptin (5 mg/Kg), which indicates that adrenergic, opioid, and serotonin receptors (5HT2) are not involved in the antinociceptive effects. L-NAME, methylene blue, glibenclamide, ondansetron, and sulpiride were able to reverse this effect. Conclusions: NO/cGMP/KATP, 5HT3 and D2 pathways play an important role in the antinociceptive effect of sitagliptin. Additionally significant anti-inflammatory effects observed in the carrageenan test might contribute in reduction of pain response in the second phase of the formalin test.

Effects of various receptor antagonists on the peripheral antinociceptive activity of aqueous extracts of Dicranopteris linearis, Melastoma malabathricum and Bauhinia purpurea leaves in mice

  • Zakaria, Zainul Amiruddin;Sodri, Nurul Husna;Hassan, Halmy;Anuar, Khairiyah;Abdullah, Fatimah Corazon
    • CELLMED
    • /
    • v.2 no.4
    • /
    • pp.38.1-38.6
    • /
    • 2012
  • The present study aimed to determine the possible mechanisms of the peripheral antinociception of the aqueous extracts of Dicranopteris linearis (AEDL), Melastoma malabathricum (AEMM) and Bauhinia purpurea (AEBP) leaves in mice. Briefly, the antinociceptive profile of each extract (300, 500, and 1000 mg/kg; subcutaneous (s.c.)), was established using the abdominal constriction test. A single dose (500 mg/kg) of each extract (s.c.) was pre-challenged for 10 min with various pain receptors' antagonists or pain mediators' blockers and 30 min later subjected to the antinociceptive assay to determine the possible mechanism(s) involved. Based on the results obtained, all extracts exerted significant (p < 0.05) antinociceptive activity with dose-dependent activity observed only with the AEMM. Furthermore, the antinociception of AEDL was attenuated by naloxone, atropine, yohimbine and theophylline; AEMM was reversed by yohimbine, theophylline, thioperamide, pindolol, reserpine, and 4-chloro-DL-phenylalanine methyl ester hydrochloride; and of AEBP was inhibited by naloxone, haloperidol, yohimbine and reserpine. In conclusion, the antinociceptive activity of those extracts possibly involved the activation of several pain receptors (i.e. opioids, muscarinic, ${\alpha}_2$-adrenergic and adenosine receptors, adenosine, H3-histaminergic and $5HT_{1A}$, dopaminergic receptors).

Nelumbinis Semen Reverses a Decrease in $5-HT_{1A}$Receptor Binding Induced by Chronic Mild Stress, a Depression-like Symptom

  • Jang, Choon-Gon;Kang, Moon-Kyu;Cho, Jae-Han;Lee, Sun-Bok;Kim, Hyun-Taek;Park, Soon-Kwon;Lee, Jin-Woo;Park, Seong-Kyu;Hong, Moo-Chang;Shin, Min-Kyu;Shim, In-Sup;Bae , Hyun-Su
    • Archives of Pharmacal Research
    • /
    • v.27 no.10
    • /
    • pp.1065-1072
    • /
    • 2004
  • Depression is associated with a dysfunctional serotonin (5-hydroxytryptamine; 5-HT) system. More recently, several lines of evidence suggest that an important factor in the development of depression may be a deficit in the function and expression of $5-HT_{1A}$ receptors. The present study assessed if Nelumbinis Semen (N. s.) had an anti-depression effect through reversing a decrease in $5-HT_{1A}$receptor binding in rats with depression-like symptoms induced by chronic mild stress. Using a $5-HT_{1A}$ receptor binding assay, with a specific $5-HT_{1A}$receptor agonist, 8- OH-DPAT (8-hydroxy-2-(di-n-propylamino) tetralin), the mechanism of the anti-depression effect of N. s. on rats was investigated, and the effects compared with two well-known antidepressants, Hyperium Perforatum (St. Johns Wort) and fluoxetine (Prozac). Animals were divided into five groups: the normal (N) group without chronic mild stress (CMS), the control (C) group under CMS for 8 weeks, the Nelumbinis Semen (N. s.) treatment group under CMS for 8 weeks, the Hyperium Perforatum (H. p.) treatment group under CMS for 8 weeks and finally, the fluoxetine (F) treatment group under CMS for 8 weeks. Each treatment was administered to rats during the last 4 weeks of the 8-week CMS. A sucrose intake test was performed to test the anti-depression effect of N. s. The N. s. treatment significantly reversed the decreased sucrose intake under CMS (P<0.05 compared to control group under CMS). In the CA2 and CA3 regions of the hippocampus, both N. s. and H. p. reversed the CMS-induced decrease in $5-HT_{1A}$receptor binding. In the I to II regions of the frontal cortex, N. s. and H. p. also reversed the CMS-induced decrease in$5-HT_{1A}$receptor binding, and even showed a significant increase in $5-HT_{1A}$receptor binding compared to the F treatment group (N. s. vs. P, p<0.05, H. p. vs. P, p<0.05). However, in the hypothalamus, all treatments reversed the CMSinduced decrease in $5-HT_{1A}$receptor binding. This reversal effect of N. s. on the decrease in $5-HT_{1A}$receptor binding in the frontal cortex, hippocampus and hypothalamus of rat brains was very similar to that of H. p, but different from that of F. It is concluded that N. s. presents an anti-depression effect through enhancing $5-HT_{1A}$receptor binding.

Effects of Neonatal Footshock Stress on Glucocorticoid and $5-HT_{2A/2C}$ Receptor Bindings and Exploratory Behavior

  • Kim, Dong-Goo;Lee, Seoul;Kang, Dong-Won;Lim, Jong-Su
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.6
    • /
    • pp.677-685
    • /
    • 1998
  • To investigate the effects of neonatal stress on behavior and neurochemistry, rats were exposed to the footshock stress on postnatal day (PND) 14 or PNDs 14 and 21. Rats were exposed to uncontrollable electric shocks delivered to the floor with a constant current (0.8 mA) for 5 sec period. Daily sessions consisted of 60 trials on a random time schedule with an average of 55 sec. The first exposure to footshocks on PND 14 decreased body weight gain for 1 day. However, the second exposure to footshocks on PND 21 did not affect body weight gain. Exploratory activity was measured by exposing a rat to a novel environment 24 h after experience of footshocks. Similar to the body weight changes, a decreased activity was noted after the first exposure to footshocks, while no changed activity was noted after the second exposure to footshocks. However, the Bmax value of $5-HT_{2A/2C}$ receptors in the cortex decreased by the second exposure to footshocks, but not by the first exposure to footshocks. Moreover, an autoradiographic study revealed that the density of $[^3H]dexamethasone$ binding in hippocampus decreased in rats exposed to footshocks 4 times during PND $14{\sim}20.$ These results suggest that the uncontrollable footshock stress changes 5-hydroxytryptamine and glucocorticoid receptor systems acutely and that the repeated exposure to the same stress may not elicit behavioral alterations by the compensatory activity of young brain although changes in some neurochemistry exist.

  • PDF

Pharmacogenomics and Schizophrenia (약물유전체학과 정신분열병)

  • Lee, Kyu Young;Chung, In Won
    • Korean Journal of Biological Psychiatry
    • /
    • v.8 no.2
    • /
    • pp.208-219
    • /
    • 2001
  • The pharmacotherapy of schizophrenia exhibits wide inter-individual variabilities in clinical efficacy and adverse effects. Recently, human genetic diversity has been known as one of the essential factors to the variation in human drug response. This suggests that drug therapy should be tailored to the genetic characteristics of the individual. Pharmacogenetics is the field of investigation that attempts to elucidate genetic basis of an individual's responses to pharmacotherapy, considering drug effects divided into two categories as pharmacokinetics and pharmacodynamics. The emerging field of pharmacogenomics, which focuses on genetic determinants of drug response at the level of the entire human genome, is important for development and prescription of safer and more effective individually tailored drugs and will aid in understanding how genetics influence drug response. In schizophrenia, pharmacogenetic studies have shown the role of genetic variants of the cytochrome P450 enzymes such as CYP2D6, CYP2C19, and CYP2A1 in the metabolism of antipsychotic drugs. At the level of drug targets, variants of the dopamine $D_2$, $D_3$ and $D_4$, and 5-$HT_{2A}$ and 5-$HT_{2C}$ receptors have been examined. The pharmacogenetic studies in schizophrenia presently shows controversial findings which may be related to the multiple involvement of genes with relatively small effects and to the lack of standardized phenotypes. For further development in the pharmacogenomics of schizophrenia, there would be required the extensive outcome measures and definitions, and the powerful new tools of genomics, proteomics and so on.

  • PDF