• Title/Summary/Keyword: 5G mobile network

Search Result 182, Processing Time 0.033 seconds

5G Network Communication, Caching, and Computing Algorithms Based on the Two-Tier Game Model

  • Kim, Sungwook
    • ETRI Journal
    • /
    • v.40 no.1
    • /
    • pp.61-71
    • /
    • 2018
  • In this study, we developed hybrid control algorithms in smart base stations (SBSs) along with devised communication, caching, and computing techniques. In the proposed scheme, SBSs are equipped with computing power and data storage to collectively offload the computation from mobile user equipment and to cache the data from clouds. To combine in a refined manner the communication, caching, and computing algorithms, game theory is adopted to characterize competitive and cooperative interactions. The main contribution of our proposed scheme is to illuminate the ultimate synergy behind a fully integrated approach, while providing excellent adaptability and flexibility to satisfy the different performance requirements. Simulation results demonstrate that the proposed approach can outperform existing schemes by approximately 5% to 15% in terms of bandwidth utilization, access delay, and system throughput.

Performance Analysis of High-Speed 5G MIMO System in mmWave Band (mmWave대역에서 고속 이동상태 5G MIMO 시스템 성능 분석)

  • Lee, Byung-Jin;Ju, Sang-Lim;Kim, Nam-il;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.103-109
    • /
    • 2018
  • One of the 5G goals is provide to high data rates for users moving at high speeds, such as trains. High mobility scenarios such as high speed train (HST) scenarios are expected to be typical scenarios for fifth generation communication systems. As the HST develops rapidly, it is necessary to transmit wireless communication data to train passengers, and the communication speed required by users is gradually increasing. HST users require high network capacity and stable communication services regardless of the location or speed of the HST communication system. Therefore, a transmission frame is constructed for the 5G mobile communication system in the mm band to be used for the fifth generation mobile communication, the HST communication system is implemented, and the performance of the wideband non-stationary MIMO HST channel is analyzed in the HST scenario.

Technical and Industrial Trends of Optical Components for 5G Mobile Access (5G 모바일 액세스용 광 부품 기술 동향)

  • Kwon, O Kyun;Kim, Namje;Park, Miran;Kim, Tae Soo;An, Shinmo
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.4
    • /
    • pp.42-52
    • /
    • 2020
  • The world's first 5G commercial service started in Korea in April 2019. This makes us proud of our status as an ICT powerhouse, and of the domestic optical network industry ecosystem that has served as a lever to make this significant leap forward in technological and industrial competitiveness. Above all, Japan's trade regulations on core parts and the COVID-19 pandemic have led to new changes across cultures, societies, and economies, and 5G networks have become important. The relevant technology for core material parts is a major concern not only of a few industries, but an entire section of society in terms of national competitiveness. In this article, we discuss the role of industries through the analysis of prospects of optical component technology with regard to the changes in the economic and social paradigm caused by the COVID-19 pandemic and Japan's export regulations.

Impact of 5G New Radio Downlink Signal on Fixed-Satellite Service Earth Station

  • Park, Yeon-Gyu;Lee, Il-Kyoo
    • Journal of information and communication convergence engineering
    • /
    • v.18 no.3
    • /
    • pp.155-161
    • /
    • 2020
  • The fifth generation (5G) is a state-of-the-art mobile communication access technology that uses sub 6 GHz bands and mmWave. Presently, the 5G network is partially deployed along with 4G in areas with dense traffic. In the future, the demand for the 5G bandwidth may increase. Thus, it is necessary to study the coexistence between the 5G and radio systems using adjacent or same channels to eliminate the interference between radio systems and efficiently utilize the frequency. This paper analyzed the impact of 5G new radio downlink on the fixed-satellite service earth station operating at the co-channel and adjacent channel in the upper 3.7 GHz band using the Spectrum Engineering Advanced Monte Carlo Analysis Tool, which is based on the Monte Carlo method. The results of this paper can be utilized for planning the frequency allocation of 5G networks; they can also be used as a guideline for deploying 5G base stations around a fixed-satellite service earth station.

Evolutionary game theory-based power control for uplink NOMA

  • Riaz, Sidra;Kim, Jihwan;Park, Unsang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2697-2710
    • /
    • 2018
  • Owing to the development of Internet of Things (IoT), the fifth-generation (5G) wireless communication is going to foresee a substantial increase of mobile traffic demand. Energy efficiency and spectral efficiency are the challenges in a 5G network. Non-orthogonal multiple access (NOMA) is a promising technique to increase the system efficiency by adaptive power control (PC) in a 5G network. This paper proposes an efficient PC scheme based on evolutionary game theory (EGT) model for uplink power-domain NOMA system. The proposed PC scheme allows users to adaptively adjusts their transmit power level in order to improve their payoffs or throughput which results in an increase of the system efficiency. In order to separate the user signals, a successive interference cancellation (SIC) receiver installed at the base station (BS) site. The simulation results demonstrate that the proposed EGT-based PC scheme outperforms the traditional game theory-based PC schemes and orthogonal multiple access (OMA) in terms of energy efficiency and spectral efficiency.

Design and Implementation of UWB Antenna with 5G Mobile Communication and WLAN Bands Rejection Characteristics (5세대 이동통신 및 WLAN 대역저지 특성을 갖는 UWB 안테나 설계 및 구현)

  • Yang, Woon Geun;Nam, Tae Hyeon
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.4
    • /
    • pp.336-341
    • /
    • 2018
  • In this paper, we designed and implemented an ultra wideband (UWB) antenna with 5G mobile communication and WLAN bands rejection characteristics. The proposed antenna consists of a planar radiation patch with two slots, parasitic elements on both sides of the strip line and ground plane on back side. The upper n-type slot contributes for 5G mobile communication band (3.42~3.70 GHz) rejection and the lower n-type slot contributes for wireless local area network (WLAN) band (5.15~5.825 GHz) rejection. Parasitic elements were used in order to satisfy the voltage standing wave ratio (VSWR) less than or equal to 2.0 for UWB band (3.10~10.60 GHz) except two rejection bands. The Ansoft's high frequency structure simulator (HFSS) was used for antenna design and simulations. The simulated antenna showed dual rejection bands of 3.36~3.71 GHz and 5.13 ~ 5.92 GHz in UWB band, and measured result for the implemented antenna showed dual rejection bands of 3.40~3.72 GHz and 5.08~5.858 GHz. Simulated and measured VSWRs are less than or equal to 2.0 for all UWB band except dual rejection bands.

Content Distribution for 5G Systems Based on Distributed Cloud Service Network Architecture

  • Jiang, Lirong;Feng, Gang;Qin, Shuang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4268-4290
    • /
    • 2015
  • Future mobile communications face enormous challenges as traditional voice services are replaced with increasing mobile multimedia and data services. To address the vast data traffic volume and the requirement of user Quality of Experience (QoE) in the next generation mobile networks, it is imperative to develop efficient content distribution technique, aiming at significantly reducing redundant data transmissions and improving content delivery performance. On the other hand, in recent years cloud computing as a promising new content-centric paradigm is exploited to fulfil the multimedia requirements by provisioning data and computing resources on demand. In this paper, we propose a cooperative caching framework which implements State based Content Distribution (SCD) algorithm for future mobile networks. In our proposed framework, cloud service providers deploy a plurality of cloudlets in the network forming a Distributed Cloud Service Network (DCSN), and pre-allocate content services in local cloudlets to avoid redundant content transmissions. We use content popularity and content state which is determined by content requests, editorial updates and new arrivals to formulate a content distribution optimization model. Data contents are deployed in local cloudlets according to the optimal solution to achieve the lowest average content delivery latency. We use simulation experiments to validate the effectiveness of our proposed framework. Numerical results show that the proposed framework can significantly improve content cache hit rate, reduce content delivery latency and outbound traffic volume in comparison with known existing caching strategies.

The Design and experiment of 5G-based metaverse motion synchronization system (5G 기반의 메타버스 모션 동기화 시스템의 설계 및 실험)

  • Lee Sangyoon;Lee Daesik;You, Youngmo;You, Hyeonsoo;Lee, Sangku
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.3
    • /
    • pp.61-75
    • /
    • 2023
  • In this paper, we design and experiment a 5G-based metaverse motion synchronization system with configuration of a mobile motion capture studio that has not been commercialized at home and abroad. As a result of the experiment, the average value of the latency test measurement using Wi-Fi is 0.134 seconds faster than the average latency test measurement value using the 5G network. Existing motion capture studios have spatial limitations as the motion capture range is limited to the Wi-Fi communication range. However, the 5G-based metaverse motion synchronization system configures a mobile motion capture studio so that motion performers can solve the spatial limitations by expanding the motion capture communication range indefinitely regardless of time and place. Therefore, it is possible to implement realistic metaverse contents by displaying a realistic and natural digital human because it is free from spatial constraints. The system which was tested in this paper can create a new business model by converging next-generation technologies that are receiving attention related to the digital virtual world, such as motion capture + 5G + digital human twin + metaverse. And it allows for research and develop a next-generation metaverse-based broadcasting solution at a recent time when the business value of digital human and metaverse technologies and functions has been proven and related sales are growing in earnest.

End to End Model and Delay Performance for V2X in 5G (5G에서 V2X를 위한 End to End 모델 및 지연 성능 평가)

  • Bae, Kyoung Yul;Lee, Hong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.107-118
    • /
    • 2016
  • The advent of 5G mobile communications, which is expected in 2020, will provide many services such as Internet of Things (IoT) and vehicle-to-infra/vehicle/nomadic (V2X) communication. There are many requirements to realizing these services: reduced latency, high data rate and reliability, and real-time service. In particular, a high level of reliability and delay sensitivity with an increased data rate are very important for M2M, IoT, and Factory 4.0. Around the world, 5G standardization organizations have considered these services and grouped them to finally derive the technical requirements and service scenarios. The first scenario is broadcast services that use a high data rate for multiple cases of sporting events or emergencies. The second scenario is as support for e-Health, car reliability, etc.; the third scenario is related to VR games with delay sensitivity and real-time techniques. Recently, these groups have been forming agreements on the requirements for such scenarios and the target level. Various techniques are being studied to satisfy such requirements and are being discussed in the context of software-defined networking (SDN) as the next-generation network architecture. SDN is being used to standardize ONF and basically refers to a structure that separates signals for the control plane from the packets for the data plane. One of the best examples for low latency and high reliability is an intelligent traffic system (ITS) using V2X. Because a car passes a small cell of the 5G network very rapidly, the messages to be delivered in the event of an emergency have to be transported in a very short time. This is a typical example requiring high delay sensitivity. 5G has to support a high reliability and delay sensitivity requirements for V2X in the field of traffic control. For these reasons, V2X is a major application of critical delay. V2X (vehicle-to-infra/vehicle/nomadic) represents all types of communication methods applicable to road and vehicles. It refers to a connected or networked vehicle. V2X can be divided into three kinds of communications. First is the communication between a vehicle and infrastructure (vehicle-to-infrastructure; V2I). Second is the communication between a vehicle and another vehicle (vehicle-to-vehicle; V2V). Third is the communication between a vehicle and mobile equipment (vehicle-to-nomadic devices; V2N). This will be added in the future in various fields. Because the SDN structure is under consideration as the next-generation network architecture, the SDN architecture is significant. However, the centralized architecture of SDN can be considered as an unfavorable structure for delay-sensitive services because a centralized architecture is needed to communicate with many nodes and provide processing power. Therefore, in the case of emergency V2X communications, delay-related control functions require a tree supporting structure. For such a scenario, the architecture of the network processing the vehicle information is a major variable affecting delay. Because it is difficult to meet the desired level of delay sensitivity with a typical fully centralized SDN structure, research on the optimal size of an SDN for processing information is needed. This study examined the SDN architecture considering the V2X emergency delay requirements of a 5G network in the worst-case scenario and performed a system-level simulation on the speed of the car, radius, and cell tier to derive a range of cells for information transfer in SDN network. In the simulation, because 5G provides a sufficiently high data rate, the information for neighboring vehicle support to the car was assumed to be without errors. Furthermore, the 5G small cell was assumed to have a cell radius of 50-100 m, and the maximum speed of the vehicle was considered to be 30-200 km/h in order to examine the network architecture to minimize the delay.

Design and implementation of planar UWB antenna with dual band rejection characteristics

  • Woon Geun Yang;Tae Hyeon Nam
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.109-115
    • /
    • 2023
  • In this paper, we design and implement an Ultra-Wide Band (UWB, 3.1~10.6 GHz) antenna with 5G mobile communication (3.42~3.70 GHz) and Wireless Local Area Network (WLAN, 5.15~5.825 GHz) bands rejection characteristics. The proposed antenna consists of a planar radiation patch with two slots. The upper slot contributes to reject 5G mobile communication band and the lower slot contributes to reject WLAN band. The Voltage Standing Wave Ratio (VSWR) values of the proposed antenna show good performances in whole UWB band except for rejection bands based on VSWR 2.0. The proposed UWB antenna was simulated using High Frequency Struture Simulator (HFSS) by Ansoft. The simulated antenna showed dual rejection bands of 3.31~3.92 GHz and 5.04~5.90 GHz in UWB band, and measured antenna showed dual rejection bands of 3.35~3.97 GHz and 5.06~5.97 GHz. The largest VSWR values measured at each rejection band are 13.60 at 3.64 GHz and 10.25 at 5.52 GHz. The measured maximum gain is 5.31 dBi at 10.00 GHz. The lowest gains for the measured antenna at rejection bands are -8.73 dBi at 3.70 GHz and -4.36 dBi at 5.56 GHz.