• Title/Summary/Keyword: 5G mobile

Search Result 637, Processing Time 0.036 seconds

A Study on the Analysis of Security Requirements through Literature Review of Threat Factors of 5G Mobile Communication

  • DongGyun Chu;Jinho Yoo
    • Journal of Information Processing Systems
    • /
    • v.20 no.1
    • /
    • pp.38-52
    • /
    • 2024
  • The 5G is the 5th generation mobile network that provides enhanced mobile broadband, ultra-reliable & low latency communications, and massive machine-type communications. New services can be provided through multi-access edge computing, network function virtualization, and network slicing, which are key technologies in 5G mobile communication. However, these new technologies provide new attack paths and threats. In this paper, we analyzed the overall threats of 5G mobile communication through a literature review. First, defines 5G mobile communication, analyzes its features and technology architecture, and summarizes possible security issues. Addition, it presents security threats from the perspective of user devices, radio access network, multi-access edge computing, and core networks that constitute 5G mobile communication. After that, security requirements for threat factors were derived through literature analysis. The purpose of this study is to conduct a fundamental analysis to examine and assess the overall threat factors associated with 5G mobile communication. Through this, it will be possible to protect the information and assets of individuals and organizations that use 5G mobile communication technology, respond to various threat situations, and increase the overall level of 5G security.

Trends and Technical Requirements for 5G Mobile Communication Systems (5G 이동통신시스템 동향 및 기술적 요구사항)

  • Park, Jae-Sung;Kim, Beom-Joon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.11
    • /
    • pp.1257-1264
    • /
    • 2015
  • With the successful deployment of 4G mobile communications such as Long-Term Evolution(: LTE), global leading countries including Europe, China, and Japan have been made an effort to take the lead in technology, standardization, and market with targeting the commercialization of 5G mobile communication in 2020. In order to judge the future evolution of a 5G mobile communication system, this paper discusses the comprehensive trends and the requirements set by each countries for the 5G mobile communication systems.

Study on Effective 5G Network Deployment Method for 5G Mobile Communication Services (5G 이동통신 서비스를 위한 효율적인 5G 망구축 방안에 관한 연구)

  • CHUNG, Woo-Ghee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.5
    • /
    • pp.353-358
    • /
    • 2018
  • We herein analyze the service traffic characteristics and spectrum of the 5G mobile communication and suggest the effective 5G network deployment method for 5G mobile communication services. The data rates of the 5G mobile communication are from several kbps (voice and IoT) up to 1 Gbps (hologram, among others). The 5G mobile communication services show the diverse cell coverage environments owing to the use of diverse service data rates and multiple spectrum bands. To effectively support the 5G mobile communication services, the network deployment requires the optimization of the service coverages for new service environments and multiple spectrum bands. Considering the 5G spectrum bandwidth debated at present, if the 5G services of 100 Mbps can be supported in the 200 m cell edge using the 3.5 GHz spectrum bands, the 5G services of the 1 Gbps hologram and 500-Mbps 4k UHD can be supported in the cell edges of 50 m and 100 m using the 28 GHz spectrum bands. Therefore, the 5G services can be supported effectively by the 5G network deployment using spectrum portfolio configurations to match the diverse 5G services and multiple bands.

A Comparative Study on 3D Data Performance in Mobile Web Browsers in 4G and 5G Environments

  • Nam, Duckkyoun;Lee, Daehyeon;Lee, Seunghyun;Kwon, Soonchul
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.3
    • /
    • pp.8-19
    • /
    • 2019
  • Since their emergence in 2007, smart phones have advanced up to the point that 5G mobile communication in 2019 started to be commercialized. Accordingly, now it is possible to share 3D modeling files and collaborate by means of a mobile web. As the recently commercialized 5G mobile communication network is so useful in sharing 3D modeling files and collaborating that even large-size geometry files can be transmitted at ultra high speed with ultra low transfer delay. We examines characteristics of major 3D file formats such as STL, OBJ, FBX, and glTF and compares the existing 4G LTE (Long Term Evolution) network with the 5G NR (New Radio) mobile communication network. The loading time and packets of each format were measured depending on the mobile web browser environments. We shows that in comparison with 4G LTE, the loading time of STL and OBJ file formats were reduced as much as 6.55 sec and 9.41 sec, respectively in the 5G NR and Chrome browsers. The glTF file format showed the most efficient performance in all of the 4G/5G mobile communication networks, Chrome, and Edge browsers. In the case of STL and OBJ, the traffic was relatively excessive in 5G NR and Edge browsers. The findings of this study are expected to be utilized to develop a 3D file format that reduces the loading time in a mobile web environment.

Analysis of Radio Spectrum Policy for the Fifth Generation Mobile Communications (5G 이동통신을 위한 전파정책 분석)

  • Kim, Chang-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.8
    • /
    • pp.679-689
    • /
    • 2015
  • The 5G mobile communication technologies have been extensively developed with the era of mobile broadband, but spectrum policy for this service has not yet set up. In this paper, We have investigated the 5G mobile service and analyzed the 5G spectrum policy taking the developing technologies into account. Based on the results of these analyses, We propose an expansion of spectrum sharing in the 3~5 GHz bands, spectrum harmonization of 5 GHz bands, and restructuring of spectrum management administration from currently three distributed management to centralized spectrum management structure.

Future Trends of IoT, 5G Mobile Networks, and AI: Challenges, Opportunities, and Solutions

  • Park, Ji Su;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.16 no.4
    • /
    • pp.743-749
    • /
    • 2020
  • Internet of Things (IoT) is a growing technology along with artificial intelligence (AI) technology. Recently, increasing cases of developing knowledge services using information collected from sensor data have been reported. Communication is required to connect the IoT and AI, and 5G mobile networks have been widely spread recently. IoT, AI services, and 5G mobile networks can be configured and used as sensor-mobile edge-server. The sensor does not send data directly to the server. Instead, the sensor sends data to the mobile edge for quick processing. Subsequently, mobile edge enables the immediate processing of data based on AI technology or by sending data to the server for processing. 5G mobile network technology is used for this data transmission. Therefore, this study examines the challenges, opportunities, and solutions used in each type of technology. To this end, this study addresses clustering, Hyperledger Fabric, data, security, machine vision, convolutional neural network, IoT technology, and resource management of 5G mobile networks.

5G Radio Access Network Architecture for Mobile Augmented Reality Service (모바일 증강현실 서비스 구현을 위한 5G 무선 액세스 네트워크 구조)

  • Cho, Hyoungjun;Chung, Jong-Moon
    • Journal of Internet Computing and Services
    • /
    • v.18 no.4
    • /
    • pp.27-34
    • /
    • 2017
  • In this paper, the analysis of mobile augmented reality service using 5G network are provided. First of all, the introduction and required performance of mobile augmented reality(MAr) service are provided. After that, 5G network key features, target performance, and network architecture are analyzed. At the end, the additional network entity and functions for the realization of mobile augmented reality service are proposed. The mobile augmented reality service time. At the end, the service delay in existing LTE system and proposed 5G MAr system by using real device and network parameters.

Validation of Cloud Robotics System in 5G MEC for Remote Execution of Robot Engines (5G MEC 기반 로봇 엔진 원격 구동을 위한 클라우드 로보틱스 시스템 구성 및 실증)

  • Gu, Sewan;Kang, Sungkyu;Jeong, Wonhong;Moon, Hyungil;Yang, Hyunseok;Kim, Youngjae
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.118-123
    • /
    • 2022
  • We implemented a real-time cloud robotics application by offloading robot navigation engine over to 5G Mobile Edge Computing (MEC) sever. We also ran a fleet management system (FMS) in the server and controlled the movements of multiple robots at the same time. The mobile robots under the test were connected to the server through 5G SA network. Public 5G network, which is already commercialized, has been temporarily modified to support this validation by the network operator. Robot engines are containerized based on micro-service architecture and have been deployed using Kubernetes - a container orchestration tool. We successfully demonstrated that mobile robots are able to avoid obstacles in real-time when the engines are remotely running in 5G MEC server. Test results are compared with 5G Public Cloud and 4G (LTE) Public Cloud as well.

Small Cell Communication Analysis based on Machine Learning in 5G Mobile Communication

  • Kim, Yoon-Hwan
    • Journal of Integrative Natural Science
    • /
    • v.14 no.2
    • /
    • pp.50-56
    • /
    • 2021
  • Due to the recent increase in the mobile streaming market, mobile traffic is increasing exponentially. IMT-2020, named as the next generation mobile communication standard by ITU, is called the 5th generation mobile communication (5G), and is a technology that satisfies the data traffic capacity, low latency, high energy efficiency, and economic efficiency compared to the existing LTE (Long Term Evolution) system. 5G implements this technology by utilizing a high frequency band, but there is a problem of path loss due to the use of a high frequency band, which is greatly affected by system performance. In this paper, small cell technology was presented as a solution to the high frequency utilization of 5G mobile communication system, and furthermore, the system performance was improved by applying machine learning technology to macro communication and small cell communication method decision. It was found that the system performance was improved due to the technical application and the application of machine learning techniques.

3GPP 5G Core Network: An Overview and Future Directions

  • Husain, Syed;Kunz, Andreas;Song, JaeSeung
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.1
    • /
    • pp.8-15
    • /
    • 2022
  • The new 5G radio technology (NR) can provide ultra-reliable low latency communications. The supporting 5G network infrastructure will move away from the previous point-to-point network architecture to a service-based architecture. 5G can provide three new things, i.e., wider channels, lower latency and more bandwidth. These will allow 5G to support three main types of connected services, including enhanced mobile broadband, mission-critical communications, and the massive Internet of Things (IoT). In 2015, the 5th generation (5G) mobile communication was officially approved by the International Telecommunication Union (ITU) as IMT-2020. Since then, 3GPP, the international organization responsible for 5G standards, is actively developing specifications for 5G technologies. 3GPP Release 15 provides the first full set of 5G standards, and the evolution and expansion of 5G are now being standardized in Release 16 and 17, respectively. This paper provides an overview of 3GPP 5G technologies and key services.