• Title/Summary/Keyword: 5G Wireless

Search Result 276, Processing Time 0.029 seconds

An Efficient Game Theory-Based Power Control Algorithm for D2D Communication in 5G Networks

  • Saif, Abdu;Noordin, Kamarul Ariffin bin;Dimyati, Kaharudin;Shah, Nor Shahida Mohd;Al-Gumaei, Yousef Ali;Abdullah, Qazwan;Alezabi, Kamal Ali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2631-2649
    • /
    • 2021
  • Device-to-Device (D2D) communication is one of the enabling technologies for 5G networks that support proximity-based service (ProSe) for wireless network communications. This paper proposes a power control algorithm based on the Nash equilibrium and game theory to eliminate the interference between the cellular user device and D2D links. This leadsto reliable connectivity with minimal power consumption in wireless communication. The power control in D2D is modeled as a non-cooperative game. Each device is allowed to independently select and transmit its power to maximize (or minimize) user utility. The aim is to guide user devices to converge with the Nash equilibrium by establishing connectivity with network resources. The proposed algorithm with pricing factors is used for power consumption and reduces overall interference of D2Ds communication. The proposed algorithm is evaluated in terms of the energy efficiency of the average power consumption, the number of D2D communication, and the number of iterations. Besides, the algorithm has a relatively fast convergence with the Nash Equilibrium rate. It guarantees that the user devices can achieve their required Quality of Service (QoS) by adjusting the residual cost coefficient and residual energy factor. Simulation results show that the power control shows a significant reduction in power consumption that has been achieved by approximately 20% compared with algorithms in [11].

Evolutionary game theory-based power control for uplink NOMA

  • Riaz, Sidra;Kim, Jihwan;Park, Unsang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2697-2710
    • /
    • 2018
  • Owing to the development of Internet of Things (IoT), the fifth-generation (5G) wireless communication is going to foresee a substantial increase of mobile traffic demand. Energy efficiency and spectral efficiency are the challenges in a 5G network. Non-orthogonal multiple access (NOMA) is a promising technique to increase the system efficiency by adaptive power control (PC) in a 5G network. This paper proposes an efficient PC scheme based on evolutionary game theory (EGT) model for uplink power-domain NOMA system. The proposed PC scheme allows users to adaptively adjusts their transmit power level in order to improve their payoffs or throughput which results in an increase of the system efficiency. In order to separate the user signals, a successive interference cancellation (SIC) receiver installed at the base station (BS) site. The simulation results demonstrate that the proposed EGT-based PC scheme outperforms the traditional game theory-based PC schemes and orthogonal multiple access (OMA) in terms of energy efficiency and spectral efficiency.

Human Effect for Commercial Wireless Power Transfer System Operating at Low Frequency (상용 자기유도방식 무선전력전송 시스템의 인체영향 분석)

  • Kang, Jun-Seok;Lee, Seungwoo;Hong, Ic-Pyo;Cho, In-Kui;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.5
    • /
    • pp.382-390
    • /
    • 2017
  • In this paper, we consider particular exposure scenarios to evaluate human effects for inductive commercial wireless charging device operating at low frequency. The coil used in this study is the A10 model in Qi standard proposed by WPC(Wireless Power Consortium), and input power is 5 W to the operating frequency of 155 kHz. In perfectly aligned condition, the max leakage magnetic field is $257.58{\mu}T$ which is obtained at the side of the device, and it is exceeded about 7.4 times of the ICNIRP 1998 reference level. The SAR is evaluated with homogeneous phantom which has electric constants of wet skin. The max value of the SAR is $134.47{\mu}W/kg$ which is obtained at the side of the device also, and it is much lower than the international guidelines. Especially, it showed higher SAR values in case of misalignment condition, so we will need to consider the misalignment condition importantly when we evaluate human effects for wireless power transfer system.

Patent Analysis on 5G Technology Trends from the Perspective of Smart Factory (특허 분석을 통한 스마트공장 관점의 5G 기술개발 동향 연구)

  • Cho, Eunnuri;Chang, Tai-Woo
    • The Journal of Society for e-Business Studies
    • /
    • v.25 no.3
    • /
    • pp.95-108
    • /
    • 2020
  • The development of 5G technology, which is a next-generation communication technology capable of processing large amounts of data in real-time and solving delays, is drawing attention. Not only in the United States but also Korea, 5G is focused on supporting R&D as a national strategic technology. The strategy for the smart factory, one of the core services of the 5G, aims to increase the flexibility of manufacturing production lines. The existing wired communications devices can be replaced into wireless ones with the ultra-low-delay and ultra-high-speed characteristics of 5G. For the efficient development of 5G technology, it is necessary to keep abreast of the status and trend. In this study, based on the collected data of 1517 Korea patents and 1928 US patents, 5G technologies trend was analyzed and key technologies were identified by network analysis and topic modeling. We expect that it will be used for decision making for policy establishment and technology strategy of related industries to provide the trends of technology development related to the introduction of 5G technology to smart factories.

The Impact of The User's Social Characteristics of 5G Services on The Intention of Use (중국 5G 서비스의 사용자 사회적 특성이 사용의도에 미치는 영향)

  • Nie, Xin-Yu;Qing, Cheng-lin
    • Journal of Digital Convergence
    • /
    • v.20 no.3
    • /
    • pp.63-68
    • /
    • 2022
  • This After the debut of 5G, our lives have changed a lot. In particular, the proliferation of wireless network services through smartphones and LTE has completely changed the existing mobile communication services that are limited to voice/text communication between individuals and individuals, and new innovative services have emerged in all aspects of personal and corporate activities. This study verified the relationship between the social characteristics of 5G services and users' willingness to use 5G services. It analyzed the influence relationship between independent variables (social reality, subjective norms), media variables (perceived usefulness) and dependent variables (use intention), set hypotheses, and identified the media effects of perceived usefulness. The measurement items of variables are defined, and the research model of 5G service usage intention is designed. A questionnaire survey was conducted on the measurement items for users who have experience in using 5G services. Based on this result, among the social factors of users of 5G services, social reality and subjective norms are suitable factors to improve users' intentions. And through this research we put forward the enlightenment, discussed the limitations of the research and future research directions.

Energy Efficiency Enhancement of Macro-Femto Cell Tier (매크로-펨토셀의 에너지 효율 향상)

  • Kim, Jeong-Su;Lee, Moon-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.1
    • /
    • pp.47-58
    • /
    • 2018
  • The heterogeneous cellular network (HCN) is most significant as a key technology for future fifth generation (5G) wireless networks. The heterogeneous network considered consists of randomly macrocell base stations (MBSs) overlaid with femtocell base stations (BSs). The stochastic geometry has been shown to be a very powerful tool to model, analyze, and design networks with random topologies such as wireless ad hoc, sensor networks, and multi- tier cellular networks. The HCNs can be energy-efficiently designed by deploying various BSs belonging to different networks, which has drawn significant attention to one of the technologies for future 5G wireless networks. In this paper, we propose switching off/on systems enabling the BSs in the cellular networks to efficiently consume the power by introducing active/sleep modes, which is able to reduce the interference and power consumption in the MBSs and FBSs on an individual basis as well as improve the energy efficiency of the cellular networks. We formulate the minimization of the power onsumption for the MBSs and FBSs as well as an optimization problem to maximize the energy efficiency subject to throughput outage constraints, which can be solved the Karush Kuhn Tucker (KKT) conditions according to the femto tier BS density. We also formulate and compare the coverage probability and the energy efficiency in HCNs scenarios with and without coordinated multi-point (CoMP) to avoid coverage holes.

Design of Triple-Band Planar Monopole Antenna Having a Parasitic Element with Low SAR Using a Reflector (기생 소자를 이용한 3중 대역 모노폴 안테나 SAR 저감 설계)

  • Bong, HanUl;Hussain, Niamat;Jeong, MinJoo;Lee, SeungYup;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.3
    • /
    • pp.181-189
    • /
    • 2019
  • In this study, a triple-band antenna that can be used in WLAN(Wireless Local Area Network) at 2.4 GHz, 5.8 GHz, and 5G at 3.5 GHz is fabricated. The proposed antenna uses a parasitic element to show the triple band, and the reflector is used at a distance of ${\lambda}/4$ from the antenna to reduce the Specific Absorption Rate(SAR). Its dimensions are $100{\times}75{\times}1.6mm^3$ and each parameter value is optimized for better performance and a lower SAR value. As a result, we obtained a bandwidth of 540 MHz(2.02~2.56 GHz), 390 MHz(3.39~3.78 GHz), and 1,210 MHz(5.56~6.77 GHz) based on the reflection loss factor of -10 dB. In addition, the SAR values of the antenna with reflector are observed to reduce below the SAR value of international standard.

A Cooperative Security Gateway cooperating with 5G+ network for next generation mBcN (차세대 mBcN을 위한 5G+ 연동보안게이트웨이)

  • Nam, Gu-Min;Kim, Hyoungshick;Lee, Hyun-Jin;Cho, Hark-Su
    • Journal of Internet Computing and Services
    • /
    • v.22 no.6
    • /
    • pp.129-140
    • /
    • 2021
  • The next generation mBcN should be built to cooperate with the wireless network to support hyper-speed and hyper-connectivity. In this paper, we propose a network architecture for the cooperation mBcN and 5G commercial network and architecture of the cooperative security gateway required for the cooperation. The proposed cooperative security gateway is between gNB and UPF to support LBO, SFC, and security. Our analysis shows that the proposed architecture has several advantages. First of all, user equipment connected with the mBcN can be easily connected through the 5G commercial radio network to the mBcN. Second, the military application traffic can be transmitted to mBcN without going through the 5G core network, reducing the end-to-end transmission delay without causing the traffic load on the 5G core network. In addition, the security level of the military application can effectively be maintained because the user equipment can be connected to the cooperative security gateway, and the traffic generated by the user equipment is transmitted to the mBcN without going through the 5G core network. Finally, we demonstrate that LBO, SFC, and security modules are essential functions of the proposed gateway in the 5G test-bed environment.

Physical-Layer Technology Trend and Prospect for AI-based Mobile Communication (AI 기반 이동통신 물리계층 기술 동향과 전망)

  • Chang, K.;Ko, Y.J.;Kim, I.G.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.5
    • /
    • pp.14-29
    • /
    • 2020
  • The 6G mobile communication system will become a backbone infrastructure around 2030 for the future digital world by providing distinctive services such as five-sense holograms, ultra-high reliability/low-latency, ultra-high-precision positioning, ultra-massive connectivity, and gigabit-per-second data rate for aerial and maritime terminals. The recent remarkable advances in machine learning (ML) technology have recognized its efficiency in wireless networking fields such as resource management and cell-configuration optimization. Further innovation in ML is expected to play an important role in solving new problems arising from 6G network management and service delivery. In contrast, an approach to apply ML to a physical-layer (PHY) target tackles the basic problems in radio links, such as overcoming signal distortion and interference. This paper reviews the methodologies of ML-based PHY, relevant industrial trends, and candiate technologies, including future research directions and standardization impacts.

Reduction of the Retransmission Delay for Heterogeneous Devices in Dynamic Opportunistic Device-to-device Network

  • Chen, Sixuan;Zou, Weixia;Liu, Xuefeng;Zhao, Yang;Zhou, Zheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4662-4677
    • /
    • 2018
  • The dynamic opportunistic device-to-device (DO-D2D) network will frequently emerge in the fifth generation (5G) wireless communication due to high-density and fast-moving mobile devices. In order to improve the Quality of Experience (QoE) of users with different computing capacity devices in the DO-D2D network, in this paper, we focus on the study of how to reduce the packets retransmission delay and satisfy heterogeneous devices. To select as many devices as possible to transmit simultaneously without interference, the concurrent transmitters-selecting algorithm is firstly put forward. It jointly considers the number of packets successfully received by each device and the device's connectivity. Then, to satisfy different devices' demands while primarily ensuring the base-layer packets successfully received by all the devices, the layer-cooperation instantly decodable network coding is presented, which is used to select transmission packets combination for each transmitter. Simulation results illustrate that there is an appreciable retransmission delay gain especially in the poor channel quality network compared to the traditional base-station (BS) retransmission algorithm. In addition, our proposed algorithms perform well to satisfy the different demands of users with heterogeneous devices.