• Title/Summary/Keyword: 5G Ultra-Dense Network

Search Result 10, Processing Time 0.02 seconds

Load Balancing Algorithm of Ultra-Dense Networks: a Stochastic Differential Game based Scheme

  • Xu, Haitao;He, Zhen;Zhou, Xianwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2454-2467
    • /
    • 2015
  • Increasing traffic and bandwidth requirements bring challenges to the next generation wireless networks (5G). As one of the main technology in 5G networks, Ultra-Dense Network (UDN) can be used to improve network coverage. In this paper, a radio over fiber based model is proposed to solve the load balancing problem in ultra-dense network. Stochastic differential game is introduced for the load balancing algorithm, and optimal load allocated to each access point (RAP) are formulated as Nash Equilibrium. It is proved that the optimal load can be achieved and the stochastic differential game based scheme is applicable and acceptable. Numerical results are given to prove the effectiveness of the optimal algorithm.

Indoor 3D Dynamic Reconstruction Fingerprint Matching Algorithm in 5G Ultra-Dense Network

  • Zhang, Yuexia;Jin, Jiacheng;Liu, Chong;Jia, Pengfei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.1
    • /
    • pp.343-364
    • /
    • 2021
  • In the 5G era, the communication networks tend to be ultra-densified, which will improve the accuracy of indoor positioning and further improve the quality of positioning service. In this study, we propose an indoor three-dimensional (3D) dynamic reconstruction fingerprint matching algorithm (DSR-FP) in a 5G ultra-dense network. The first step of the algorithm is to construct a local fingerprint matrix having low-rank characteristics using partial fingerprint data, and then reconstruct the local matrix as a complete fingerprint library using the FPCA reconstruction algorithm. In the second step of the algorithm, a dynamic base station matching strategy is used to screen out the best quality service base stations and multiple sub-optimal service base stations. Then, the fingerprints of the other base station numbers are eliminated from the fingerprint database to simplify the fingerprint database. Finally, the 3D estimated coordinates of the point to be located are obtained through the K-nearest neighbor matching algorithm. The analysis of the simulation results demonstrates that the average relative error between the reconstructed fingerprint database by the DSR-FP algorithm and the original fingerprint database is 1.21%, indicating that the accuracy of the reconstruction fingerprint database is high, and the influence of the location error can be ignored. The positioning error of the DSR-FP algorithm is less than 0.31 m. Furthermore, at the same signal-to-noise ratio, the positioning error of the DSR-FP algorithm is lesser than that of the traditional fingerprint matching algorithm, while its positioning accuracy is higher.

Analysis and study of Deep Reinforcement Learning based Resource Allocation for Renewable Powered 5G Ultra-Dense Networks

  • Hamza Ali Alshawabkeh
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.226-234
    • /
    • 2024
  • The frequent handover problem and playing ping-pong effects in 5G (5th Generation) ultra-dense networking cannot be effectively resolved by the conventional handover decision methods, which rely on the handover thresholds and measurement reports. For instance, millimetre-wave LANs, broadband remote association techniques, and 5G/6G organizations are instances of group of people yet to come frameworks that request greater security, lower idleness, and dependable principles and correspondence limit. One of the critical parts of 5G and 6G innovation is believed to be successful blockage the board. With further developed help quality, it empowers administrator to run many systems administration recreations on a solitary association. To guarantee load adjusting, forestall network cut disappointment, and give substitute cuts in case of blockage or cut frustration, a modern pursuing choices framework to deal with showing up network information is require. Our goal is to balance the strain on BSs while optimizing the value of the information that is transferred from satellites to BSs. Nevertheless, due to their irregular flight characteristic, some satellites frequently cannot establish a connection with Base Stations (BSs), which further complicates the joint satellite-BS connection and channel allocation. SF redistribution techniques based on Deep Reinforcement Learning (DRL) have been devised, taking into account the randomness of the data received by the terminal. In order to predict the best capacity improvements in the wireless instruments of 5G and 6G IoT networks, a hybrid algorithm for deep learning is being used in this study. To control the level of congestion within a 5G/6G network, the suggested approach is put into effect to a training set. With 0.933 accuracy and 0.067 miss rate, the suggested method produced encouraging results.

A Study on Dynamic Channel Assignment to Increase Uplink Performance in Ultra Dense Networks (초고밀도 네트워크에서 상향링크 성능향상을 위한 유동적 채널할당 연구)

  • Kim, Se-Jin
    • Journal of Internet Computing and Services
    • /
    • v.23 no.5
    • /
    • pp.25-31
    • /
    • 2022
  • In ultra dense networks (UDNs), macro user equipments (MUEs) have significant interference from small-cell access points (SAPs) since a number of SAPs are deployed in the coverage of macro base stations of 5G mobile communication systems. In this paper, we propose a dynamic channel assignment scheme to increase the performance of MUEs for the uplink of UDNs even though the number of SAPs is increased. The target of the proposed dynamic channel assignment scheme is that the signal-to-interference and noise ratio (SINR) of MUEs is above a given SINR threshold assigning different subchannels to SUEs from those of MUEs. Simulation results show that the proposed dynamic channel assignment scheme outperforms others in terms of the mean MUE capacity even though the mean SUE capacity is decreased a little lower.

A Novel Service Migration Method Based on Content Caching and Network Condition Awareness in Ultra-Dense Networks

  • Zhou, Chenjun;Zhu, Xiaorong;Zhu, Hongbo;Zhao, Su
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2680-2696
    • /
    • 2018
  • The collaborative content caching system is an effective solution developed in recent years to reduce transmission delay and network traffic. In order to decrease the service end-to-end transmission delay for future 5G ultra-dense networks (UDN), this paper proposes a novel service migration method that can guarantee the continuity of service and simultaneously reduce the traffic flow in the network. In this paper, we propose a service migration optimization model that minimizes the cumulative transmission delay within the constraints of quality of service (QoS) guarantee and network condition. Subsequently, we propose an improved firefly algorithm to solve this optimization problem. Simulation results show that compared to traditional collaborative content caching schemes, the proposed algorithm can significantly decrease transmission delay and network traffic flow.

Sequence-to-Sequence based Mobile Trajectory Prediction Model in Wireless Network (무선 네트워크에서 시퀀스-투-시퀀스 기반 모바일 궤적 예측 모델)

  • Bang, Sammy Yap Xiang;Yang, Huigyu;Raza, Syed M.;Choo, Hyunseung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.517-519
    • /
    • 2022
  • In 5G network environment, proactive mobility management is essential as 5G mobile networks provide new services with ultra-low latency through dense deployment of small cells. The importance of a system that actively controls device handover is emerging and it is essential to predict mobile trajectory during handover. Sequence-to-sequence model is a kind of deep learning model where it converts sequences from one domain to sequences in another domain, and mainly used in natural language processing. In this paper, we developed a system for predicting mobile trajectory in a wireless network environment using sequence-to-sequence model. Handover speed can be increased by utilize our sequence-to-sequence model in actual mobile network environment.

Performance Evaluation of Unidirectional and Bidirectional Recurrent Neural Networks (단방향 및 양방향 순환 신경망의 성능 평가)

  • Sammy Yap Xiang Bang;Kyunghee Jung;Hyunseung Choo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.652-654
    • /
    • 2023
  • The accurate prediction of User Equipment (UE) paths in wireless networks is crucial for improving handover mechanisms and optimizing network performance, particularly in the context of Beyond 5G and 6G networks. This paper presents a comprehensive evaluation of unidirectional and bidirectional recurrent neural network (RNN) architectures for UE path prediction. The study employs a sequence-to-sequence model designed to forecast user paths in a wireless network environment, comparing the performance of unidirectional and bidirectional RNNs. Through extensive experimentation, the paper highlights the strengths and weaknesses of each RNN architecture in terms of prediction accuracy and computational efficiency. These insights contribute to the development of more effective predictive path-based mobility management strategies, capable of addressing the challenges posed by ultra-dense cell deployments and complex network dynamics.

Technical Trends of Small Cell Base Stations for LTE (LTE 기반 소형셀 기지국 기술동향)

  • Na, J.H.;Kim, K.S.;Kim, D.S.;Chung, H.K.
    • Electronics and Telecommunications Trends
    • /
    • v.30 no.1
    • /
    • pp.102-113
    • /
    • 2015
  • 급증하는 모바일 트래픽 용량에 대처하고 사용자의 QoS(Quality of Service)를 만족시킬 수 있는 기술 중 하나로 단위면적당 용량 증대에 기여할 수 있는 소형셀 기술이 부각되고 있다. 소형셀 기지국 기술은 3G, 4G 이동통신시스템에서는 셀의 소형화를 통한 용량 증대, 음영지역 해소를 위하여 사용되고 있으며, 5G 이동통신에서는 보다 밀집한 셀의 구성 및 셀 소형화를 통한 용량증대 기술로 UDN(Ultra Dense Network) 분야와 연계되어 연구 중이다. 본고에서는 소형셀 기지국 주요 기술분석을 통하여 상용 소형셀 기지국의 개발 접근방법을 제시하고, 소형셀 표준화 동향을 통한 소형셀 기지국 진화방향을 알아본다. 또한, 소형셀 기지국 기술 시장 동향분석으로 국내 및 글로벌 시장의 규모를 파악하여 향후 5G 이동통신에서의 소형셀 기술의 나아가야 하는 방향을 제시하고자 한다.

  • PDF

Interference Aware Fractional Frequency Reuse using Dynamic User Classification in Ultra-Dense HetNets

  • Ban, Ilhak;Kim, Se-Jin
    • Journal of Internet Computing and Services
    • /
    • v.22 no.5
    • /
    • pp.1-8
    • /
    • 2021
  • Small-cells in heterogeneous networks are one of the important technologies to increase the coverage and capacity in 5G cellular networks. However, due to the randomly arranged small-cells, co-tier and cross-tier interference increase, deteriorating the system performance of the network. In order to manage the interference, some channel management methods use fractional frequency reuse(FFR) that divides the cell coverage into the inner region(IR) and outer region(OR) based on the distance from the macro base station(MBS). However, since it is impossible to properly measure the distance in the method with FFR, we propose a new interference aware FFR(IA-FFR) method to enhance the system performance. That is, the proposed IA-FFR method divides the MUEs and SBSs into the IR and OR groups based on the signal to interference plus noise ratio(SINR) of macro user equipments(MUEs) and received signals strength of small-cell base stations(SBSs) from the MBS, respectively, and then dynamically assigns subchannels to MUEs and small-cell user equipments. As a result, the proposed IA-FFR method outperforms other methods in terms of the system capacity and outage probability.

Study of Localization Based on Fingerprinting Technique Using Uplink CSI in Cloud Radio Access Network (클라우드 무선접속 네트워크에서 상향링크 채널 상태 정보를 이용한 핑거프린팅 기반 실내 측위에 관한 연구 시스템)

  • Woo, Sangwoo;Lee, Sangheon;Mun, Cheol
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.2
    • /
    • pp.71-77
    • /
    • 2019
  • With 5G standards proceeding in earnest and increasing demand for services of indoor localization, research on indoor location recognition is being studied in various industrial fields, and research based on fingerprint recognition technology using Wireless Local Area Network (WLAN) is representative. In this paper, we propose an indoor positioning system based on fingerprinting technique that uses Cloud Radio Access Network (C-RAN) architecture and Channel State Information (CSI). In order to improve the performance in indoor positioning, we combined existing fingerprinting method and K nearest neighbor (KNN) technology which is one of the machine running technique. The performance improvements of the proposed indoor positioning system was verified by comparative experiments with the existing localization technique in a indoor localizztion testbed.