• Title/Summary/Keyword: 5G NR

Search Result 71, Processing Time 0.028 seconds

Performance Evaluation of PBCH in LTE-Based 5G MBMS and 5G NR (LTE 기반 5G MBMS 와 5G NR 의 PBCH 성능 평가)

  • Ahn, Haesung;Kim, Hyeongseok;Cha, Eunyoung;Kim, Jeongchang;Park, Sung-Ik;Hur, Namho
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.260-263
    • /
    • 2021
  • 3GPP (3rd generation partnership project)는 5G 요구 조건을 충족시키기 위해 release 16 에서 FeMBMS (further evolved MBMS)를 LTE 기반 5G MBMS 로 개선하였다. 이어서, 현재 개발 중인 release 17 에서 NR 기반의 디지털 방송을 위한 NR MBS (multimedia broadcast services)가 논의되고 있다. 본 논문에서는 LTE (long term evolution) 기반 5G MBMS (fifth generation multimedia broadcast & multicast services)와 5G NR (fifth generation new radio)의 PBCH (physical broadcast channel) 에 대한 송수신기 구조를 설명하고, 성능을 평가한다. 본 논문에서는 가산 백색 가우시안 잡음(additive white Gaussian noise: AWGN) 및 고정 환경 하에서 LTE 기반 5G MBMS 와 5G NR 에 대한 PBCH 의 성능을 비교한다.

  • PDF

A Study on Application of DSS for enhancing 5G Coverage (5G 커버리지 개선을 위한 DSS 적용 방안 연구)

  • Seong-Gyoon, Park;Soong-Hwan, Ro
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.693-704
    • /
    • 2022
  • 5G service uses mid-band (n78) than existing mobile communication frequencies, so it is necessary to improve 5G coverage by utilizing low-band frequencies below 2 GHz. To this end, the application of Dynamic Spectrum Sharing technology of LTE and 5G-NR system using most of the low-band frequencies is required. In this paper, signaling overhead factors for DSS application and RF issues for terminal implementation are derived, and signaling overhead ratios from the respective perspectives of 5G-NR and LTE for the 1.8GHz band (50MHz width) that can utilize wide-bandwidth among low-band frequencies are estimated. Also handset RF issues were analyzed. Based on the analysis results, if DSS technology using low band is applied, it is expected that excellent 5G service quality can be provided due to 5G coverage improvement when LTE traffic quickly migrates to 5G-NR.

Performance Evaluation of PBCH Detection of LTE-Based 5G MBMS and 5G NR for Cellular Broadcast (셀룰러 방송을 위한 LTE 기반 5G MBMS와 5G NR의 PBCH 검출 성능 평가)

  • Ahn, Haesung;Kim, Hyeongseok;Cha, Eunyoung;Kim, Jeongchang;Ahn, Seok-Ki;Kwon, Sunhyoung;Park, Sung-Ik;Hur, Namho
    • Journal of Broadcast Engineering
    • /
    • v.26 no.6
    • /
    • pp.766-777
    • /
    • 2021
  • This paper presents an improved scheme for detection of the physical broadcast channel (PBCH) in long-term evolution (LTE)-based fifth-generation (5G) multimedia broadcast and multicast services (MBMS) and 5G new radio (NR) for cellular broadcast. In the time domain, by combining the correlations between the received signal and primary synchronization signal (PSS) within all SS/PBCH blocks, the frame synchronization and the start position of the SS/PBCH blocks can be obtained. In this paper, to improve the detection performance of PBCH for 5G NR, a combining scheme of PBCH signals within a frame is proposed. In addition, the performance of the proposed detection scheme is evaluated and the performance is compared with the conventional scheme for PBCH detection of LTE-based 5G MBMS. The simulation results show that the detection performance of PBCH for 5G NR is improved by combining the PBCH signals and outperforms LTE-based 5G MBMS under the additive white Gaussian noise (AWGN), fixed, and mobile environments.

Hardware Structure of Cross Correlation based PSS Detector for Cell Search and Synchronization of 5G NR Systems (5G NR 셀 탐색과 동기화를 위한 교차상관관계 기반 PSS 검출기 구조)

  • Lee, Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.3
    • /
    • pp.412-421
    • /
    • 2022
  • All 5G NR devices must first perform the cell search and synchronization process to communicate with the base station. In this process, PSS detection is one of the most important and difficult problems in 5G NR communication because PSS detection must first be successful in order to extract essential information from the following signals. Among the various PSS detection methods, this paper describes a cross-correlation-based detection method, and the implementation methods of the tap delay line hardware with parallelization are introduced and compared in terms of complexity and detection speed. In addition, the interface required for system configuration including the PSS detector and control software for efficient and flexible operation are also explained. In this paper, the resource usages of Xilinx's UltraScale+ FPGA are compared for various PSS detector structures and analyzed according to various parallelization levels.

5G Wireless Communication Technology for Non-Terrestrial Network (비지상네트워크를 위한 5G 무선통신 기술)

  • Kim, J.H.;Yoon, M.Y.;You, D.H.;Lee, M.S.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.6
    • /
    • pp.51-60
    • /
    • 2019
  • As a way to further expand and enable the 5G ecosystem, the $3^{rd}$ Generation Partnership Project (3GPP) is considering the development of a 5G new radio (NR)-based non-terrestrial network (NTN). These NTNs are expected to provide ubiquitous 5G services to user's equipment (especially, in Internet of Things/machine-type communications (IoT/MTC) public safety, and critical communications) by extending service coverage to areas not covered by 5G terrestrial networks. To this end, this NTN is developing scenarios to provide 5G services using spaceborne vehicles, such as geosynchronous and low-Earth orbit satellites, and airborne vehicles, such as unmanned aircraft systems, including high-altitude pseudo-satellites. In addition, various technologies are being studied to satisfy new requirements not considered in 5G NR, such as long propagation delay time, large cell coverage, large Doppler effect, and base station movement. In this paper, we present the scenarios, requirements, technical issues and solutions, and standardization planning for NR-based NTN in 3GPP.

대황 모상근 추출물의 세포독성

  • Hwang, Seong-Jin;Pyo, Byeong-Sik;Na, Myeong-Seok;Park, Don-Hui;Hwang, Baek
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.453-456
    • /
    • 2001
  • The purpose of this research was to investigate the effects of extracts from cultured hairy roots of R. undulatum on human kidney epithelial cells. Hairy roots were induced by a co-culture with A. rhizogenes ATCCl5834 and cultured in WPM medium. The cytotoxicity was measured by colorimetric assay using 3-(4,5-dimethythiazol-2-yl)-2,5- diphenyl-2H -tetrazolium bromide (MTT), neutral red (NR) and sulforhodamine protein B (SRB) with human kidney epithelial cell lines A498. MTT, NR and SRB quantities decreased propotionally in cultured A498 cells treated with the water or chloroform extracts of cultured hairy roots at increasing concentrations. These results suggest that extracts of cultured hairy 개ots are cytotoxic on human epithelial cells. The cytotoxicity of chloroforrm fraction was stronger than that of water fraction. The values of $MTT_{50}$, $NR_{50}$, $SRB_{50}$ of the extracts of chloroform fraction and those of water fraction were measured to be 289.3${\mu}g$/ml, 302.7${\mu}g$/ml. 433.8${\mu}g$/ml and 475.8${\mu}g$/ml. 428.3${\mu}g$/ml, 549.5${\mu}g$/ml in A498 cell line.

  • PDF

A Study on Cell ID Detection Scheme Using Synchronization Signals for 5G NR System (5G NR 시스템을 위한 동기 신호를 이용한 cell ID 검출을 위한 방법 연구)

  • Ahn, Haesung;Cha, Eunyoung;Kim, Hyeongseok;Kim, Jeongchang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.593-595
    • /
    • 2020
  • 본 논문에서는 5G NR 시스템을 위한 동기 신호를 이용한 cell ID 검출 방법에 대한 성능을 비교하였다. 5G NR(fifth-generation new radio) 시스템의 송신기는 SS/PBCH (synchronization signal/physical broadcast channel) 블록을 송신하며, 수신기는 수신된 SS/PBCH 블록을 이용하여 주파수 및 타이밍 오프셋 (frequency and timing offset)을 추정 할 수 있으며, cell ID (cell identity)는 PSS (primary synchronization signal)와 SSS (secondary synchronization signal)를 통해 검출할 수 있다. 본 논문에서는 cell ID 를 검출할 수 있는 방법으로서 2-stage 디코딩 방법과 결합 최대우도 결정 규칙 (joint maximum-likelihood decision rule: joint ML) 디코딩 방법을 사용하였다. Joint ML 디코딩 방법은 2-stage 디코딩 방법에 비해 더 좋은 검출 성능을 보이지만, 복잡도 측면에서는 2-stage 디코딩 방법이 joint ML 디코딩 방법에 비해 더 낮은 복잡도를 갖는 것을 확인하였다.

  • PDF

Deep Learning-Based Detection of Cell ID of 5G NR (딥러닝을 이용한 5G NR 의 Cell ID 검출 기법)

  • Cha, Eunyoung;Ahn, Haesung;Kim, Hyeongseok;Kim, Jeongchang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.634-636
    • /
    • 2020
  • 본 논문에서는 딥러닝 (deep learning) 방식을 이용한 5G NR (fifth-generation new radio)의 cell ID (cell identity) 검출 기법을 구현하였다. 5G NR 시스템의 단말 (user equipment)은 초기 접속 (initial access)과정에서 PSS (primary synchronization signal)와 SSS (secondary synchronization signal)을 이용한 동기 획득 및 cell ID 검출이 필요하다. 본 논문에서는 분류 기법 기반의 딥러닝 기술을 이용하여 인공 신경망 모델에 PSS 및 SSS 와 cell ID 의 상관 관계를 학습시키고, 학습된 모델의 성능을 제시하였다.

  • PDF

Dual-band Planar Monopole Antenna for Autonomous Vehicle (자율주행자동차를 위한 이중대역 평판 모노폴 안테나)

  • Yoon, Yonghyun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.4
    • /
    • pp.343-348
    • /
    • 2019
  • In this paper, a dual-band antenna is proposed for the autonomous vehicle as well as omni-directional. The proposed antenna operates in the 4G/LTE band (1,710~2,170MHz) and 5G/NR band (3,400~3,700MHz). In order to obtain the dual-band operation, the planar monopole antenna is proposed as the novel structure with single port of the 50ohm. To give the properties of dual-band, an additional antenna element with slit was added to the planar monopole antenna, and then a structural adjustment parameter was optimized for achieving the target performance in bands. The planar monopole antenna in the LTE band acts as the coupled feed for the added parasitic radiator in the 5G NR band. The proposed antenna has $38.5{\times}36.0{\times}1.0[mm^3]$ on a ground with diameter of 96mm. From the fabrication and measurement results, the impedance bandwidth (VSWR<2) of the proposed antenna covers 1,480~2,260MHz (LTE band: 1,710~2,170MHz) and 3,310~3,930MHz (5G NR band: 3,400~3,700MHz). The proposed planar monopole antenna also obtained the measured gain and radiation pattern of omni-directional radiation pattern in the anechoic chamber.

Effects of pH and Temperature on the Adsorption of Cationic Dyes from Aqueous Suspension by Maghnia Montmorillonite (수용액으로부터 양이온 염료 흡수에 대한 pH 및 온도 효과)

  • Elaziouti, A.;Laouedj, N.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.2
    • /
    • pp.208-217
    • /
    • 2011
  • The effects of pH and temperature on the removal of two dyes (neutral red; NR and malachite green oxalates; MG) from aqueous effluents using Maghnia montmorillonite clay in a batch adsorption process were investigated. The results showed the stability of the optical properties of MG in aqueous solution and adsorbed onto clay under wide range of pH 3-9. However, the interaction of NR dye with clay is accompanied by a red shift of the main absorption bands of monomer cations under pH range of 3-5, whereas, those of neutral form remains nearly constant over the pH range of 8-12. The optimal pH for favorable adsorption of the dyes, i.e. ${\geq}$90% has been achieved in aqueous solutions at 6 and 7 for NR and VM respectively. The most suitable adsorption temperatures were 298 and 318 K with maximum adsorption capacities of 465.13mg/g for NR and 459.89 mg/g for MG. The adsorption equilibrium results for both dyes follow Langmuir, Freundlich isotherms. The numerical values of the mean free energy $E_a$ of 4.472-5.559 kj/mol and 2.000-2.886 kj/mol for NR and MG respectively indicated physical adsorption. Various thermodynamic parameters, such as ${\Delta}H^{\circ}$, ${\Delta}S^{\circ}$, ${\Delta}G^{\circ}$ and Ea have been calculated. The data showed that the adsorption process is spontaneous and endothermic. The sticking probability model was further used to assess the potential feasibility of the clay mineral as an alternative adsorbent for organic ion pollutants in aqueous solution.