• Title/Summary/Keyword: 5052 alloy

Search Result 124, Processing Time 0.024 seconds

Annealing Characteristics of Ultrafine Grained AA1050/AA5052 Complex Aluminum Alloy Sheet Fabricated by Accumulative Roll-Bonding (반복겹침접합 압연공정에 의해 제조한 초미세립 AA1050/AA5052 복합알루미늄합금판재의 어닐링 특성)

  • Lee, Seong-Hee;Lee, Gwang-Jin
    • Korean Journal of Materials Research
    • /
    • v.21 no.12
    • /
    • pp.655-659
    • /
    • 2011
  • An ultrafine grained complex aluminum alloy was fabricated by an accumulative roll-bonding (ARB) process using dissimilar aluminum alloys of AA1050 and AA5052 and subsequently annealed. A two-layer stack ARB process was performed up to six cycles without lubricant at an ambient temperature. In the ARB process, the dissimilar aluminum alloys, AA1050 and AA5052, with the same dimensions were stacked on each other after surface treatment, rolled to the thickness reduction of 50%, and then cut in half length by a shearing machine. The same procedure was repeated up to six cycles. A sound complex aluminum alloy sheet was fabricated by the ARB process, and then subsequently annealed for 0.5h at various temperatures ranging from 100 to $350^{\circ}C$. The tensile strength decreased largely with an increasing annealing temperature, especially at temperatures of 150 to $250^{\circ}C$. However, above $250^{\circ}C$ it hardly decreased even when the annealing temperature was increased. On the other hand, the total elongation increased greatly above $250^{\circ}C$. The hardness exhibited inhomogeneous distribution in the thickness direction of the specimens annealed at relatively low temperatures, however it had a homogeneous distribution in specimens annealed at high temperatures.

Mechanical properties and formability of asymmetrically rolled aluminum alloy sheet (무윤활 압연한 알루미늄 판재의 기계적 특성과 성형성)

  • Akramov, S.;Kim, In-Soo
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.429-431
    • /
    • 2009
  • Drawability and other mechanical properties of sheet metals are strongly dependent on their crystallographic orientations. In this paper the formability of the AA 5052 Al alloy sheets was investigated after asymmetric rolling and subsequent heat treatment. In most cases, after asymmetric rolling specimens showed a fine grain size and subsequent heat treated specimens showed that the ND // <111> texture component were observed. The anisotropy of formability is often described by the plastic strain ratios (r-value) as a function of the angle to the rolling direction in sheet metal. For a good formability, a high r-value is required in sheet metals. In the asymmetry rolled and subsequent heat treated Al alloy sheet, the variation of the plastic strain ratios have been investigated in this study, The plastic strain ratios of the asymmetry rolled and subsequent heat treated AA 5052 Al alloy sheets were higher than those of the original Al sheets. These could be related to the formation of ND // <111> texture components through asymmetric rolling in Al sheet.

  • PDF

A Study on the Effect that Pin Shape on Mechanical Strength in Dissimilar Friction Stir Welding A6061-T6 and A5052-H32 (A6061-T6과 A5052-H32재의 이종 마찰교반용접시 핀 형상이 기계적 강도에 미치는 영향에 관한 연구)

  • Park, Hee-Sang;Choi, Won-Doo;Ko, Jun-Bin;Lee, Young-Ho;Shin, Ki-Seok;Kim, In-Chul;Choi, Man-Yong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.3
    • /
    • pp.270-278
    • /
    • 2009
  • Friction stir welding is a relatively new solid state joining process. A6061-T6 and A5052-H32 aluminium alloy has gathered wide acceptance in the fabrication of light weight structures requiring a high strength to weight ratio and good corrosion resistance. This friction stir process uses a non-consumable tool to generate frictional heat in the abutting surfaces. The welding parameters such as tool rotational speed, welding speed, etc., and tool pin profile play a major role in deciding FSP zone formation in A6061-T6 and A5052-H32 aluminium alloy. Three different tool pin profiles have been used to fabricate the dissimilar butt joints. The formation of friction stir processed zone has been analysed macroscopically. Tensile properties of the joints have been evaluated and correlated with the friction stir processed zone formation.

  • PDF