• Title/Summary/Keyword: 5-hydroxy-2-methyl-1

Search Result 195, Processing Time 0.027 seconds

Antioxidant Constituents of Athyrium acutipinnulum (섬고사리의 항산화 성분)

  • Hye Jin Park;Se Hwan Ryu;Sang Won Yeon;Ayman Turk;Solip Lee;Hak Hyun Lee;Bang Yeon Hwang;Mi Kyeong Lee
    • Korean Journal of Pharmacognosy
    • /
    • v.54 no.2
    • /
    • pp.53-60
    • /
    • 2023
  • Athyrium acutipinnulum, called as Ulleungdo ladyfern (Seom-go-sa-ri), is a native plant of South Korea. A. acutipinnulum has been consumed as foods and also traditionally used for the treatment of epilepsy, gonorrhea and nerve disorder. The methanolic extract and EtOAc soluble fraction of A. acutipinnulum showed the antioxidant activity. Fractionation using various chromatographic techniques resulted in the isolation of 13 compounds. The structures were elucidated on the basis of spectroscopic methods as seven phenolic compounds, methyl 2-hydroxy-3-phenylpropanoate (1), protocatechualdehyde (2), caffeic acid (3), trans-p-coumaric acid (4), (-)-4-E-caffeoyl-L-threonic acid (5), 5-O-caffeoyl shikimic acid (6) and 5-O-caffeoyl quinic acid (7), three flavonoids, quercetin 3-O-β-glucoside (8), naringenin-7-O-β-glucoside (9) and sutchenoside A (10), two steroids, ponasterone A (11) and ecdysone (12) and a coumarin, esculetin (13). Among them, compounds 5 and 10 were first reported from Athyrium spp and compounds 2, 5, 6 and 7 showed the antioxidant activity.

Synthesis of Cephalosporin Derivatives with Triazolylthiomethylpyrrolidines at the C-3 Side Chain (트리아조릴 티오메칠피로리딘을 3번 측쇄에 가진 세파로스포린 유도체의 합성)

  • 고옥현;홍준희
    • YAKHAK HOEJI
    • /
    • v.46 no.5
    • /
    • pp.313-319
    • /
    • 2002
  • Synthesis of 7$\beta$-[(Z)-2-(2-aminothiazol-4-yl)-2-(1-carboxy-1-methylethoxyimino)acetamido]-3-[[(3S, 5S)-5-[4-phenyl-5-(4-methylphenyl or 2-thiophenyl)-4H-l, 2, 4- triazol-3-yl]thiomethylpyrrolidin-3-yl]]thiomethyl-3-cephem-4-carboxylic acids (7a, 7b) were described. (2S, 4S)-4-acethylthio-2-[4-phenyl-5-(4-methylphenyl or 2-thiophenyl)-4 H-1, 2, 4-triazol-3-yl]thiomethyl-1-tert-butoxycarbonylpyrrolidines (4a, 4b) were prepared from trans-4-hydroxy-L-proline with (2S, 4R)-absolute configuration as starting material. 4-Phenyl-5-(4-methylphenyl or 2-thiophenyl)-4 H-l, 2, 4-triazol-3-thiols (2a, 2b) were prepared from p-toluic anhydride and 2-thiophene carboxylic acid hydrazide, respectively. p-Methoxybenzyl 7$\beta$-(Z)-2-(2-for-mamidothiazol-4-yl)-2-(1-tert-butoxycarbonylisopropylimino]acetamido-3-[[ (3S, 5S)-5-[4-phenyl-5-(4-methylphenyl or 2-thio phenyl)-4H-1, 2, 3-triazol-3-yl]thiomethyl-1- tert-butoxycarbonylpyrrolidin-3-yl]]thiomethyl-3-cephem-4-carboxylates (6a, 6b) were achieved by using p-methoxybenzyl ]7P-(Z)-2-(2-formamidothiazol-4-yl)-2-(tert-butoxycarbonylisopropylimino] acetamido-3-chloromethyl-3-cephem-4-carboxylate (5) and (2S, 4S)-4-acethylthio-2-[4-phenyl-5-(4-methyl phenyl or 2-thiophenyl)-4H-1, 2, 4-triazol-3-yl]thiomethyl-1-tert-butoxycarbonyl pyrrolidines (4a, 4b). Removal of formyl, Boc, and p-methoxybenzyl protecting groups were carried out by triflu oroacetic acid and anisole to give the target compounds.

Constituents of Paulownia tomentosa Stem(III): The Crystal Structure of Methyl 5-Hydroxy-dinaphtho[1,2-2',3]furan-7,12-dione-6-carboxylate

  • Park, Il-Yeong;Kim, Bak-Kwang;Kim, Yang-Bae
    • Archives of Pharmacal Research
    • /
    • v.15 no.1
    • /
    • pp.52-57
    • /
    • 1992
  • The molecular structure of a natural compound was determined by single crystal X-ray diffraction analysis. The compound was isolated by methanol extraction and repeated chromatography from the stem of Paulownia tomentosa. Yellow prismatic crystals of the compound, which were recrystallized from tetrahydrofuran, are triclinic, with a = 7.310 (6), b = 10.753(6), c = 11.586(5) ${\AA}.\;\alpha= 93.30(6),\;\beta=105.62(10),\;\gamma=109.49(7)^\circ,\;D_x=1.514,\;D_m=1.51 g/cm^3$, space group P1 and Z = 2. The structure was solved by direct method, and refined by least-squares procedure to the final R-value of 0.032 for 1271 independent reflections $(F\le3\sigma{(F))}$. The compound is one of new furanquinone analogue. The molecule has a nearly planar conformation with an intramolecular hydrogen bond. In the crystal, the planar molecules are arranged as a prallel sheet-like pattern, and these stackings are stabilized by the O-H...O type intermolecular hydrogen bonds. The other intermolecular contacts appear to be the normal van der Waals interactions.

  • PDF

Chemical Constituents of Abies koreana Leaves with Inhibitory Activity against Nitric Oxide Production in BV2 Microglia Cells

  • Baek, Sa-Wang;Kim, E. Ray;Kim, Jin-Woong;Kim, Young-Choong
    • Natural Product Sciences
    • /
    • v.17 no.3
    • /
    • pp.175-180
    • /
    • 2011
  • Eleven compounds were isolated from fresh leaves of Abies koreana (Pinaceae), and structures of these compounds were determined to be 3-hydroxy-2-methyl-4-pyrone (1), maltol-3-O-${\beta}$-D-glucoside (2), (-)-epicatechin (3), naringenin 7-O-${\beta}$-D-glucopyranoside (4), naringenin-7-O-rhamnoglucoside (5), kaempferol 3-O-${\beta}$-D-glucopyranoside (6), (+)-isolariciresinol (7), secoisolariciresinol (8), rhododendrol (9), ferulic acid (10) and 4-(4-hydroxyphenyl)butan-2-one (rheosmin) (11) by comparing $^1H$-, $^{13}C$-NMR and MS spectroscopic data with reference values. Compounds 3, 5, 7, 8, 9, 10, 11 were isolated for the first time from A. koreana. Among eleven isolates, compounds 1, 7 and 11 showed inhibitory activities against lipopolysaccharide (LPS)-induced nitric oxide (NO) production in BV-2 microglia in a concentration dependent manner.

Characterization of Volatile Components in Eoyuk-jang (어육장의 휘발성 향기 성분 특성)

  • Yoon, Mi-Kyung;Choi, A-Reum;Cho, In-Hee;You, Min-Jung;Kim, Ji-Won;Cho, Mi-Sook;Lee, Jong-Mee;Kim, Young-Suk
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.4
    • /
    • pp.366-371
    • /
    • 2007
  • The volatile components in Eoyuk-jang, a traditional Korean fermented food, were isolated using solvent extraction, and analyzed by gas chromatography-mass spectrometry (GC-MS). A total of 36 components, including 11 aliphatic hydrocarbons, 4 acids, 2 ketones, 5 phenols, 7 alcohols, 1 pyrazines, 4 pyrones and furanones, and 2 miscellaneous components, were found in Eoyuk-jang; among them, butanoic acid was quantitatively dominant. In addition, the aroma-active compounds were determined by gas chromatography-olfactometry (GC-O) using aroma extract dilution analysis (AEDA). A total of 20 aroma-active compounds were detected by GC-O. Butanoic acid (rancid) and methional (cooked potato-like) were the most potent aroma-active compounds with the highest FD factors $(Log_3$, FD), followed by 2-methyl-2-butanol (soysauce-like), 3-hydroxy-2-butanone (buttery), and 2-furanmethanol (burnt sugar-like).

Liquid Chromatography-Tandem Mass Spectrometry for the Determination of Lithospermic Acid B in Rat Serum

  • Kim, Hui-Hyun;Ji, Hye-Young;Lee, Hye-Won;Kim, Youn-Chul;Sohn, Dong-Hwan;Lee , Hye-Suk
    • Archives of Pharmacal Research
    • /
    • v.27 no.12
    • /
    • pp.1202-1206
    • /
    • 2004
  • A rapid, sensitive and selective liquid chromatography-tandem mass spectrometric (LC-MS/ MS) method for the determination of lithospermic acid B (LSB) in rat serum was developed. LSB and internal standard, 7-hydroxy-3-phenyl-chromen-4-one (HPC) were extracted from rat serum with methyl-tert-butyl ether at acidic pH and analyzed on a Luna $C_8$ column with the mobile phase of acetonitrile-ammonium formate (10 mM, pH 6.5) (50:50, v/v). The analytes were detected using a negative electrospray ionization tandem mass spectrometry in the multiple- reaction-monitoring mode. The standard curve was linear $(r^2 = 0.997)$ over the concentration range of 10.0-500 ng/mL. The coefficient of variation and relative error for intra- and interassay at three QC levels were 1.1~6.2% and -10.3~-2.7%, respectively. The recovery of LSB from serum sample ranged from 73.2 to 79.5%, with that of HPC (internal standard) being 75.1 %. The lower limit of quantification for LSB was 10 ng/mL using 50 ${\mu}L$ of serum sample.

Inhibition of $Na^+,\;K^+$$-ATPase, cyclicAMP Phonsphodiesterase and Platelet Activation by Secondary Metabolites from Marine Organisms (혈소판 및 $Na^+,\;K^+$$-ATPase, cyclicAMP 포스포디에스테라제에 대한 해양천연물질의 작용)

  • Park, Young-Hyun;Chang, Sung-Keun;Kim, In-Kyu;Seo, Young-Wan;Shin, Jong-Heon
    • YAKHAK HOEJI
    • /
    • v.41 no.3
    • /
    • pp.345-351
    • /
    • 1997
  • The purpose of this investigation was to determine the inhibition of $Na^+,\;K^+$-ATPase, cyclicAMP phophodiesterase and platelet activation by secondary metabolites isolated from mar ine organisms. The secondary metabolites were isolated and identified as six diterpenoids(1 : astrogorgin, 2 : ophirin, 3 : calicophirin B, 4, 5 and 6 : cladiellin) from the dichloromethane extract of Muricellajsp., four ceramides(1,2,3, and 4) from Acabaria undulata and three antharaquinones(1,2 : crysophanol, and 3 : physcion) from Urechis unicintus. The results demonstrated that diterpenoids(2,3, and 4) showed the inhibition of cyclicAMP phosphodiesterase, and ceramides(1,3, and 4) showed the inhibition of cyclicAMP phosphodiesterase and thrombin(0.1 units/ml)-induced aggregation of washed rabbit platelet, and anthrapuinones((1,2, and 3) showed the inhibition of $Na^+,\;K^+$-ATPase. Among the anthraquionones, 1,2-dimethoxy-3-methyl-8-hydroxy-anthraquinone(1) showed the inhibition of collagen(1.0 ${\mu}g$/ml)-induced aggregation in a concenration-dependent manner with IC50 value of 42.8 ${\mu}g$M.

  • PDF

Phenolic Compounds and Triterpenes from the Barks of Diospyros burmanica

  • Choi, Janggyoo;Cho, Jae Youl;Kim, Young-Dong;Htwe, Khin Myo;Lee, Woo-Shin;Lee, Jun Chul;Kim, Jinwoong;Yoon, Kee Dong
    • Natural Product Sciences
    • /
    • v.21 no.2
    • /
    • pp.76-81
    • /
    • 2015
  • Diospyros burmanica Kurz. is an evergreen deciduous tree distributed in Mandalay of Myanmar, which belongs to the family of Ebenaceae. In Myanmar, it has been used to treat diarrhea, diabetes, diabetes and also as lumbers. In this study, seven flavonoids (1 - 7), a phenolic compound (8), and five triterpenes (9 - 13) were isolated from the barks of D. burmanica and their chemical structures were elucidated. Isolates were identified to be (+)-catechin (1), (+)-catechin 3-O-$\alpha$-L-rhamnopyranoside (2), (+)-catechin 3-O-gallate (3), (-)-epicatechin (4), (-)-epicatechin 3-O-gallate (5), (+)-afzelechin 3-O-$\alpha$-L-rhamnopyranoside (6), (+)-2,3-trans-dihydrokaempferol 3-O-$\alpha$-L-rhamnopyranoside (7), methyl gallate (8), lupeol (9), methyl lup-20(29)-en-3-on-28-oate (10), $\beta$-amyrin (11), $\alpha$-amyrin (12), $3\beta$-hydroxy-D:B-friedo-olean-5-ene (13) through MS, 1H NMR and 13C NMR spectroscopic evidences.

Electrophysiological Characterization of AMPA and NMDA Receptors in Rat Dorsal Striatum

  • Jeun, Seung-Hyun;Cho, Hyeong-Seok;Kim, Ki-Jung;Li, Qing-Zhong;Sung, Ki-Wug
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.3
    • /
    • pp.209-214
    • /
    • 2009
  • The striatum receives glutamatergic afferents from the cortex and thalamus, and these synaptic transmissions are mediated by ${\alpha}$-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and N-methyl D-aspartate (NMDA) receptors. The purpose of this study was to characterize glutamate receptors by analyzing NMDA/AMPA ratio and rectification of AMPA and NMDA excitatory postsynaptic currents (EPSCs) using a whole-cell voltage-clamp method in the dorsal striatum. Receptor antagonists were used to isolate receptor or subunit specific EPSC, such as (DL)-2-amino-5-phosphonovaleric acid (APV), an NMDA receptor antagonist, ifenprodil, an NR2B antagonist, CNQX, an AMPA receptor antagonist and IEM-1460, a GluR2-lacking AMPA receptor blocker. AMPA and NMDA EPSCs were recorded at - 70 and + 40 mV, respectively. Rectification index was calculated by current ratio of EPSCs between + 50 and - 50 mV. NMDA/AMPA ratio was 0.20${\pm}$0.05, AMPA receptor ratio of GluR2-lacking/GluR2-containing subunit was 0.26${\pm}$0.05 and NMDA receptor ratio of NR2B/NR2A subunit was 0.32${\pm}$0.03. The rectification index (control 2.39${\pm}$0.27) was decreased in the presence of both APV and combination of APV and IEM-1460 (1.02${\pm}$0.11 and 0.93${\pm}$0.09, respectively). These results suggest that the major components of the striatal glutamate receptors are GluR2-containing AMPA receptors and NR2A-containing NMDA receptors. Our results may provide useful information for corticostriatal synaptic transmission and plasticity studies.

The Biochemical Characterization of D-Hydroxyisovalerate Dehydrogenase, a Key Enzyme in the Biosynthesis of Enniatins

  • Lee, Chan; Zocher, Rainer
    • BMB Reports
    • /
    • v.29 no.6
    • /
    • pp.493-499
    • /
    • 1996
  • The biochemical properties of purified D-hydruxyisovalerate dehydrogenase from Fusarium sambucinum was elucidated. D-Hydroxyisovalerate dehydrogenase produced solely D-hydroxyisovalerate from 2-ketoisovalerate. The isoelectric point of the purified enzyme was 7.0. The enzyme was highly specific with 2-ketoisovalerate ($K_{m}=0.188$ mM, $V_{max}=8.814$ mmol/min mg) and 2-keto-3-methyl-n-valerate ($K_{m}=0.4$ mM, $V_{max}=1.851$ mmol/min mg) for the reductive reaction. This was also seen by comparing D-hydroxyisovalerate ($K_{m}=1.667$ mM, $V_{max}=0.407$ mmol/min mg) and D-hydroxy-3-methyl-n-valerate ($K_{m}=6.7$ mM, $V_{max}=0.648$ mmol/min mg) for the oxidative reaction. Thiol blocking reagents, such as iodoacetamide, N-ethylmaleimide and p-chloromecuribenzoate inhibited about 80% of enzyme activity at 0.02 mM, 50 mM and 50 mM, respectively. The enzyme activity was also inhibited by the addition of 0.1 mM of various metal ions, such as $Fe^{2+}$ (67%), $Cu^{2+}$ (88%), $Zn^{2+}$ t (76%) and $Mg^{2+}$ (9%). The enzyme was stable over three months in 50 mM potassium phosphate buffer (pH 5~7) at $-80^{\circ}C$. However the purified enzyme lost 30% of its activity in the same buffer after 24 h at $4^{\circ}C$. The studies about thermal inactivation of D-hydroxyisovalerate dehydrogenase exhibit 209.2 kJ/M of activation enthalpy and 0.35 kJ/mol K of activation entropy.

  • PDF