• Title/Summary/Keyword: 5-UTR

Search Result 136, Processing Time 0.025 seconds

Characterization of T-DNA Insertional Mutant of Formaldehyde-Responsive Protein1 (T-DNA 삽입에 의한 Formaldehyde-Responsive Protein1 기능파괴 돌연변이체의 특성연구)

  • Seo, Jae-Hyun;Woo, Su-Young;Kim, Wook;Kwon, Mi
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.4
    • /
    • pp.501-507
    • /
    • 2010
  • Formaldehyde responsive protein(FRP) 1 belongs to the family of universal stress protein(USP) and is known to respond to stress caused by fumigation of gaseous volatile organic compounds(VOCs) such as formaldehyde and toluene. However, the molecular function of this protein is not well understood at cellular and molecular level. In this study, loss of function mutant of FRP1 generated by T-DNA insertion(frp1-4) has been isolated from Arabidopsis thaliana and the function of FRP1 was characterized. The loss-of-function mutant of FRP1 appeared slight growth defects with shorter stem and rosette leaves compared to wild type. In addition, the damage caused by exogenous VOCs was more severe in frp1-4 than in control. Therefore, Arabidopsis FRP1 seems to be the protein involved not only in the growth and development of plant but also the stress resistance against toxic volatile organic compounds.

Cold Shock Response and Low Temperature Stable Transcript of DEAD-box RNA Helicase in Bacillus subtilis (DEAD-box RNA Helicase 유전자가 결핍된 Bacillus subtilis의 저온 충격 반응성과 저온 안정성 전사물)

  • Oh, Eun-Ha;Lee, Sang-Soo
    • Korean Journal of Microbiology
    • /
    • v.47 no.4
    • /
    • pp.289-294
    • /
    • 2011
  • We investigated the cold shock sensitivity of DEAD-box RNA helicase gene deleted strains of in Bacillus subtilis CU1065. To understand cold shock effects, cells were cultivated at $37^{\circ}C$ to log phase ($O.D_{600}$=0.5-0.6) and then temperature was shifted to $15^{\circ}C$. Cold shock slow down the growth rate of wild type and deleted strains of DEAD-box RNA helicase gene (ydbR, yfmL, yqfR, deaD). The growth rate of ydbR deleted strain is 5 times severely reduced compared to that of wild type strain (CU1065). But the growth rate of other three (yfmL, yqfR, deaD) deleted strains is nearly equal to the growth rate of wild type. Compared to $37^{\circ}C$, the amount of ydbR and yqfR mRNA transcripts are increased at the growth temperature of $15^{\circ}C$. On the other hands the mRNA transcripts of yfmL and deaD are not changed at both conditions of $37^{\circ}C$ and $15^{\circ}C$. Upon cold shock treatment ydbR mRNA transcript is clearly increased. After treatment of rifampicin (bacteria transcription inhibitor) the amount of ydbR mRNA was measured. Temperature shift from $37^{\circ}C$ to $15^{\circ}C$ and rifampicin treatment showed slowly decay of ydbR mRNA. But at $37^{\circ}C$ and rifampicin treatment ydbR mRNA is rapidly reduced. These results showed that cold shock induction of ydbR mRNA resulted from the stability of ydbR mRNA and not from the transcription induction of ydbR. In relation to these results, we found the cold box element of csp (cold shock protein gene) in 5' untranslated region of ydbR gene. Cold shock induction of ydbR is caused by the stability of ydbR mRNA like the stability of csp mRNA.

ASSOCIATION STUDY OF ATTENTION-DEFICIT/HYPERACTIVITY DISORDER(ADHD) AND THE DOPAMINE TRANSPORTER(DAT1) GENE - CASE CONTROL DESIGN STUDY - (주의력결핍과잉행동 장애와 도파민 운반체 유전자간 연합연구 - 환자-대조군 디자인 연구 -)

  • Kim Boong-Nyun;Cho Soo-Churl
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.16 no.2
    • /
    • pp.199-210
    • /
    • 2005
  • Objective : Attention deficit hyperactivity disorder(ADHD) affects $5-10\%$ of children in Korea, with more boys and girls being diagnosed. Despite seriousness of ADHD, little is known about its causes. From the current genetic epidemiologic studies, ADHD is known as a heritable disorder. Till now, however, there have been very few genetic studies about ADHD in Korea. The aim of the this study is to examine the association between dopamine transporter gone type 1 and ADHD using case-control design in Korean ADHD probands and normal controls. Materials and Method : Child Psychiatric Genetic research team in Seoul National University Hospital, Clinical Research Institute recruited the ADHD probands using clinical interview/observation, diverse rating scales, and neuropsychological tests. For eliminating phenocopy or ADHD, diagnosis of ADHD was based upon clinical data, psychometric data, and parent/teacher reports. Total 85 ADHD-probands were recruited as final study subjects and independent 100 normal adults participated in this study as control group. For all the ADHD probands, and controls, the 3'-UTR-VNTR polymorphism of DAT1 was analyzed. Based on the DAT1 allele and genotype informations, Chi-square test based on case-control design was performed. Results : As for genetic study, total of 85 probands and 100 controls were included for the genetic analysis. Four different alleles, 350bp (7repeat), 440bp (9repeat), 480bp (10repeat) and 520bp (11repeat) were found in DAT1 gene of study subjects. In case-control analysis, ADHD probands and parents have significantly more 9 repeat allele and 9/10 genotype. Also, The probands with 9repeat allele have more commission errors in ADS. Conclusion : The positive association between ADHD and DAT1 gene was replicated in this report like other previous results for caucasian children and Korean children with ADHD. There are ongoing studies on other candidate genes such as DRD4 and DRD5 and it would be required to explore the association of these candidate genes in Korean children with ADHD. These ongoing genetic research will contribute to the understanding of heterogenous genetic and environmental etiologies of ADHD phenotype, which will lead to the development of more comprehensive treatment and preventive interventions for ADHD.

  • PDF

Molecular Breeding of Tobacco Plants Resistant to TMV and PVY (분자생물학적 TMV 및 PVY 저항성 연초 육종)

  • E.K. Pank;Kim, Y.H.;Kim, S.S.;Park, S.W.;Lee, C.H.;K.H.Paik
    • Proceedings of the Korean Society of Tobacco Science Conference
    • /
    • 1997.10a
    • /
    • pp.134-152
    • /
    • 1997
  • Plant viruses of tobacco including tobacco mosaic virus (TMV) and potato virus Y (PVY) cause severe economic losses in leaf-tobacco production. Cultural practices do not provide sufficient control against the viruses. Use of valuable resistant cultivars is most recommendable for the control of the viruses. However, conventional breeding programs are not always proper for the development of virus-resistant plants mostly owing to the frequent lack of genetic sources and introduction of their unwanted properties. Therefore, we tried to develop virus-resistant tobacco plants by transforming commercial tobacco cultivars, NC 82 and Burley 21, with coat protein (CP) or replicase (Nlb) genes of TMV and PVY necrosis strain (PVY-VN) with or without untranslated region (UTR) and with or without mutation. Each cDNA was cloned and inserted in plant expression vectors with 1 or 2 CaMV 35S promotors, and introduced into tobacco leaf tissues by Agrobacterium tumefaciens LBA 4404. Plants were regenerated in kanamycin-containing MS media. Regenerated plants were tested for resistance to TMV and PVY In these studies, we could obtain a TMV-resistant transgenic line transformed with TMV CP and 6 genetic lines with PVY-VN cDNAs out of 8 CP and replicase genes. In this presentation, resistance rates, verification of gene introduction in resistant plants, stability of resistance through generations, characteristics of viral multiplication and translocation in resistant plants, and resistance responses relative to inoculum potential and to various PVY strains will be shown. Yield and quality of leaf tobacco of a promising resistant tobacco line will be presented.

  • PDF

Identification of Novel Single Nucleotide Polymorphisms on ADSL Gene Using Economic Traits in Korean Native Chicken (한국재래닭의 ADSL 유전자 내 단일염기변이를 이용한 경제형질과의 연관성 분석)

  • Lee, J.A.;Jeon, S.A.;Oh, J.D.;Park, K.D.;Choi, K.D.;Jeon, G.J.;Lee, H.K.;Kong, H.S.
    • Korean Journal of Poultry Science
    • /
    • v.36 no.3
    • /
    • pp.207-213
    • /
    • 2009
  • Adenylosuccinate lyase (ADSL) deficiency is a disease of purine metabolism which affects patients both biochemicall and behaviorally. An obstacle of this purine nucleotide cycle(PNC) can be caused brain functional disorder and growth disorder. So ADSL deficiency, which is associated with sever mental retardation, autistic features and energy metabolism. This study was performed to identify SNP on ADSL gene in chicken. The nucleotides were observed as T to C ($7724^{th}$ nucleotide), C to T ($7732^{nd}$ nucleotide), G to T ($10108^{th}$ nucleotide), A to T ($10356^{th}$ nucleotide), G to A($10375^{th}$ nucleotide), A to C ($10402^{nd}$ nucleotide), A to T ($12716^{th}$ nucleotide), T to A ($12717^{th}$ nucleotide), C to T ($15491^{st}$ nucleotide), C to T ($15542^{nd}$ nucleotide) and C to T ($15550^{th}$ nucleotide). The nucleotide substitutions at $15542^{nd}$ and $15550^{th}$ (GeneBank accession no. AY665559) were found as missense mutation (alanine$\rightarrow$valine, proline$\rightarrow$serine, respectively). This study will be useful for farther researches for identifying association between these SNPs and energy metabolism in chicken. The C15550T SNP showed three genotypes, CC, CT, TT by digestion with the genotype TT had significantly faster the first lay day (150.0) than CT (162.0, P<0.05) and genotype TT (150.0, P<0.05) had significantly higher the egg production rate than CT (172.4, P<0.05). According to result of this study, a C15550T was found to have a significantly effect first lay day and mean egg production. It will be possible to use SNP marker on selecting chicken to improve important economic traits, which is the first lay day and mean egg production.

Isolation and Characterization of a Novel Flavonoid 3'-Hydroxylase (F3'H) Gene from a Chrysanthemum (Dendranthema grandiflorum) and Its Gamma-ray Irradiated Mutants (감마선 처리에 의한 스프레이형 국화 화색변이체로부터 Flavonoid 3'-Hydroxylase(F3'H) 유전자의 분리 및 특성 구명)

  • Chung, Sung-Jin;Lee, Geung-Joo;Kim, Jin-Baek;Kim, Dong-Sub;Kim, Sang-Hoon;Kang, Si-Yong
    • Horticultural Science & Technology
    • /
    • v.30 no.2
    • /
    • pp.162-170
    • /
    • 2012
  • The objectives of this study were to isolate and the sequence of novel $F3'H$ gene related to an anthocyanin pathway, and to confirm the expression patterns of the gene involved in the flower color variations of chrysanthemum mutants. In this study, we isolated the full-length cDNAs and the genomic DNAs of an $F3'H$ gene from a wild type (WT) chrysanthemum (cv. Argus) and its three color mutants. The sequence analysis revealed a putative open reading frame of 1,527 bp that encodes a polypeptide of 509 amino acids. Sequence homology ranged from 97% to 99% between 'Argus' and its three color mutants. The sequence analysis from the genomic DNA revealed that the chrysanthemum $DgF3'H$ gene consisted of three exons and two introns spanning a 3,830 bp length. The sizes of the gene for three mutants ranged from a shorter size of 3,828 bp to a longer size of 3,838 bp when compared to the size of WT. The total size of the two introns was 2,157 bp for WT, but those for three color mutants ranged from 2,154 bp to 2,159 bp. A result of an RT-PCR analysis indicated that the color variations of the mutants AM1 and AM2 can be partly explained by the structural modification derived from the sequencial changes in the gene caused by gamma ray. A Southern blot analysis revealed that the $DgF3'H$ gene existing as multiple copies in the chrysanthemum genome. A systemic study will be further needed to provide a genetic mechanism responsible for the color mutation and to uncover any involvement of genetic elements for the expression of the $DgF3'H$ gene for the color variation in chrysanthemum.