• 제목/요약/키워드: 5-HT_{3A} receptor

검색결과 105건 처리시간 0.026초

Enhancement of GluN2B Subunit-Containing NMDA Receptor Underlies Serotonergic Regulation of Long-Term Potentiation after Critical Period in the Rat Visual Cortex

  • Joo, Kayoung;Rhie, Duck-Joo;Jang, Hyun-Jong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권6호
    • /
    • pp.523-531
    • /
    • 2015
  • Serotonin [5-hydroxytryptamine (5-HT)] regulates synaptic plasticity in the visual cortex. Although the effects of 5-HT on plasticity showed huge diversity depending on the ages of animals and species, it has been unclear how 5-HT can show such diverse effects. In the rat visual cortex, 5-HT suppressed long-term potentiation (LTP) at 5 weeks but enhanced LTP at 8 weeks. We speculated that this difference may originate from differential regulation of neurotransmission by 5-HT between the age groups. Thus, we investigated the effects of 5-HT on apha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-, ${\gamma}$-aminobutyric acid receptor type A (GABAAR)-, and N-methyl-D-aspartic acid receptor (NMDAR)-mediated neurotransmissions and their involvement in the differential regulation of plasticity between 5 and 8 weeks. AMPAR-mediated currents were not affected by 5-HT at both 5 and 8 weeks. GABAAR-mediated currents were enhanced by 5-HT at both age groups. However, 5-HT enhanced NMDAR-mediated currents only at 8 weeks. The enhancement of NMDAR-mediated currents appeared to be mediated by the enhanced function of GluN2B subunit-containing NMDAR. The enhanced GABAAR- and NMDAR-mediated neurotransmissions were responsible for the suppression of LTP at 5 weeks and the facilitation of LTP at 8 weeks, respectively. These results indicate that the effects of 5-HT on neurotransmission change with development, and the changes may underlie the differential regulation of synaptic plasticity between different age groups. Thus, the developmental changes in 5-HT function should be carefully considered while investigating the 5-HT-mediated metaplastic control of the cortical network.

3D QSAR Study of 2-Methoxyphenylpiperazinylakanamides as 5-Hydroxytryptamine (Serotonin) Receptor 7 Antagonists

  • Nagarajan, Santhosh Kumar;Madhavan, Thirumurthy
    • 통합자연과학논문집
    • /
    • 제9권2호
    • /
    • pp.128-135
    • /
    • 2016
  • 5-hydroxytryptamine (serotonin) receptor ($5-HT_7R$) 7 is one of G-Protein coupled receptors, which is activated by the neurotransmitter Serotonin. After activation by serotonin, $5-HT_7$ activates the production of the intracellular signaling molecule cyclic AMP. $5-HT_7$ receptor has been found to be involved in the pathophysiology of various disorders. It is reported that $5-HT_7$ receptor antagonists can be used as antidepressant agents. In this study, we report the important structural and chemical parameters for 2-methoxyphenylpiperazinylakanamides as $5-HT_7R$ inhibitors. A 3D QSAR study based on comparative molecular field analysis (CoMFA) was performed. The best predictions were obtained for the best CoMFA model with $q^2$ of 0.594 with 6 components, $r^2$ of 0.986, Fisher value as 60.607, and an estimated standard error of 0.043. The predictive ability of the test set was 0.602. Results obtained the CoMFA models suggest that the data are well fitted and have high predictive ability. The contour maps are generated and studied. The contour analyses may serve as tool in the future for designing of novel and more potent $5-HT_7R$ derivatives.

흰쥐 해마절편에서 포도당/산소 고갈에 의한 5-hydroxytryptamine 유리변동에 미치는 Adenosine의 영향 (Effect of Adenosine on the Release of $[^3H]-5-hydroxytryptamine$ during Glucose/Oxygen Deprivation from Rat Hippocampal Slices)

  • 차광은;배영숙;이경은
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권6호
    • /
    • pp.657-664
    • /
    • 1997
  • The effects of adenosine, adenosine A1 receptor antagonist (DPCPX), or NMDA receptor antagonist (APV) on the spontaneous release of $[^3H]-5-hydroxytryptamine$ ($[^3H]-5-HT$) during normoxic/normoglycemic or hypoxic/hypoglycemic period were studied in the rat hippocampal slices. The hippocampus was obtained from the rat brain and sliced $400\;{\mu}m$ thickness with the tissue slicer. After 30 min's preincubation in the normal buffer, the slices were incubated for 30 min in a buffer containing $[^3H]-5-HT$ ($0.1\;{\mu}M,\;74{\mu}Ci/8\;ml$) for uptake, and washed. To measure the release of $[^3H]-5-HT$ into the buffer, the incubation medium was drained off and refilled every ten minutes through sequence of 14 tubes. Induction of glucose/oxygen deprivation (GOD; medium depleting glucose and gassed with 95% $N_2/5%\;CO_2$) was done in 6th and 7th tube. The radioactivities in each buffer and the tissue were counted using liquid scintillation counter and the results were expressed as a percentage of the total radioactivities. When slices were exposed to GOD for 20 mins, the spontaneous release of $[^3H]-5-HT$ was markedly increased and this increase of $[^3H]-5-HT$ release was blocked by adenosine ($10\;{\mu}M$) or DL-2-amino-5-phosphonovaleric acid (APV; $30\;{\mu}M$). Adenosine $A_1$ receptor specific antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) exacerbate GOD-induced increase of spontaneous release of $[^3H]-5-HT$. These results suggest that Adenosine may play a role in the GOD-induced spontaneous release of $[^3H]-5-HT$ through adenosine $A_1$ receptor activity.

  • PDF

만성통증이 유발된 흰쥐에서 관찰된 침진통효과의 세로토닌성 기전 (Activation of spinal Serotonergic Receptor Contributes to Electroacupuncture Analgesia in Rat with Chronic Pain)

  • 박동석;신홍기;이경희
    • 대한한의학회지
    • /
    • 제26권3호
    • /
    • pp.239-248
    • /
    • 2005
  • Objectives : Electroacupuncture (EA)-induced analgesia has been known to be mediated through the activation of opioid, noradrenergic and serotonergic receptors. However, little study on serotonergic mechanism has been performed in an animal model of chronic pain. The present study was designed to elucidate the type of serotonergic receptors responsible for EA analgesia in the chronic pain model. Methods : In rats with complete Freund's: adjuvant-induced inflammation and spinal nerve injury, spinal wide dynamic range (WDR) cell responses to graded electrical stimulation of afferent C fiber were recorded before and after spinal application of selective 5-hydroxytryptamine (5-HT) receptor antagonists. EA stimulation (2Hz, 0.5msec, 3mA) was applied to the contralateral Zusanli point for 30 min. Results : In both models of chronic pain, WDR cell responses were greatly inhibited after EA stimulation. EA-induced inhibition of WDR celt responses was significantly attenuated by spinal application of non-selective 5-HT receptor antagonist, dihydroergocristine Of 5-HT receptor antagonists tested, 5-HT1A (WAY 100635) and 5-HT2 (LY53857) receptor antagonists strongly reduced an ability of EA stimulation to inhibit WDR cell responses. However, 5-HT1B (GR55562) and 5-HT3 (LY278584) receptor antagonists also had weak but significant blocking action on EA-induced inhibitory effect on chronic pain. Conclusions : Dorsal hem cell responses, afferent C fiber stimulation, chronic pain, electroacupuncture, serotonergic receptors.

  • PDF

The Effect of Ethanol on 5-Hydrosytryptamine Receptor-Mediated Ion Current in Cultured NCB-20 Neuroblastoma Cells

  • Woo, Hyo-Geyng;Chung, In-Kyo;Cho, Goon-Jae;Chung, Yong-Za;Il Yun
    • Journal of Life Science
    • /
    • 제9권2호
    • /
    • pp.82-85
    • /
    • 1999
  • The effects of ethanol on 5-hydrosytryptamine(5-HT3) receptor-mediated ion current were evaluated in whole-cell patch-clamp recordings from NCB-20 neuroblastoma cells. The physiologic and pharmacologic properties of 5-HT-activated ion current in NCB-20 cells indicated that it was mediated by 5-HT3 receptors. Ethanol(25-100mM) potentiated 5-HT3 receptor-mediated current in a concentration-dependent manner.

Pharmacolgocial Characterization of LB50016, N-(4-Amino)Butyl 3-Phenylpyrrolidine Derivative, as a New 5-HT_{1A}Receptor Agonist

  • Lee, Chang-Ho;Oh, Jeong-In;Park, Hee-Dong;Kim, Hee-Jin;Park, Tae-Kyo;Kim, Jae-Soon;Hong, Chang-Yong;Lee, Seok-Jong;Ahn, Kyo-Han;Kim, Yong-Zu
    • Archives of Pharmacal Research
    • /
    • 제22권2호
    • /
    • pp.157-164
    • /
    • 1999
  • LB50016 was characterized as a selective and potent$ 5-HT_{1A}$ receptor agonist and evaluate it anxiolytic and antidepressant activities. It shows high affinity for $ 5-HT_{1A}$receptor, moderate affinity for $\alpha$2 adrenergic and $ 5-HT_{2A}$receptors and no significant affinity for other receptors tested. Hypothermia and increased serum corticosterone level were observed in LB50016-treated rats, which are mediated mostly by post synaptic $ 5-HT_{1A}$ receptor activation. In the mouse forced swim model for depression, LB50016-elicited dose-dependent reductions in immobility time, showing $ED_{50}$ of approximately 3 mg/kg i.p., which was blocked by pretreatment of NAN-190, $ 5-HT_{1A}$antagonist. In face-to-face test for anxiolytic activity in mice, estimated $ED_{50}$ was 2 mg/kg, i.p.. In isolation-induced aggression test with mice, fifty-fold increases in latency to attack were observed at 30 min and last up to 4 h after LB50016 treatment (3 mg/kg, i.p.). Taken together, LB50016-induced pharmacological activities are mediated by activation of $ 5-HT_{1A}$receptors, offering an effective therapeutic candidate in the management of anxiety and depression in humans.

  • PDF

Collagen 유발(誘發) 관절염(關節炎) 동물모델에 대(對)한 전침자극(電鍼刺戟)의 진통효과(鎭痛效果) 및 그 기전(機轉)에 관(關)한 연구(硏究) - serotonergic receptor(5-HT1, 5-HT2)와 관련(關聯)된 기전연구(機轉硏究) - (The Study on the Analgesic Effect and its Serotonergic Mechanism of Electroacupuncture in the Rat Model of Collagen-induced Arthritis)

  • 백용현;양형인;박동석;최도영
    • Journal of Acupuncture Research
    • /
    • 제21권6호
    • /
    • pp.51-62
    • /
    • 2004
  • Objective: To investigate the analgesic effect and its serotonergic mechanism, especially related with 5-HTI and 5-HT2 receptor, of electroacupuncture(EA) in the rat model of collagen-induced arthritis(CIA). Methods : Immunization of male Sprague-Dawley rats with bovine type II (C II) collagen emulsified in Freund's incomplete adjuvant, followed by a booster injection 14 days later, leads to development of arthritis in more than 70% of rats by 21 days postinjection. After three weeks of first immunization, EA stimulation(2 Hz, 0.07 mA, 0.3 ms) was delivered into Jogsamni($ST_{36}$) for 30 minutes. Analgesic effect was evaluated by tail flick latency(TFL). We compared the analgesic effect of EA with TFLs between pretreatment of normal saline and pretreatment of spiroxatrine (5-HT1 receptor antagonist, 1mg/kg, intraperitoneal) and spiperone (5-HT2 receptor antagonist, 1 mg/kg, intraperitoneal) in CIA. Results : 1. TFLs were gradually decreased in CIA as increasing severity of arthritis. 2. Jogsamni($ST_{36}$) EA stimulation in CIA increased TFLs and the effect lasted for 60 minutes. 3. Increased TFLs with Jogsamni($ST_{36}$) EA stimulation were inhibited by pretreatment of spiroxatrine and spiperone in CIA. Conclusions : Jogsamni($ST_{36}$) EA showed analgesic effects in CIA The analgesic effects of Jogsamni($ST_{36}$) EA were inhibited by spiroxatrine and spiperone pretreatment. These observations suggest that 5-HT1 and 5-HT2 serotonergic receptor, which involve the release of serotonin neurotransmitter, play an important roles in analgesic mechanism of EA stimulation.

  • PDF

한국인 주의력결핍 과잉행동장애와 세로토닌 1B 수용체 유전자 다형성의 관련성:가족기반 연구 및 환자-대조군 연구 (A Family-Based and Case-Control Association Study of the Serotonin 1B Receptor Gene Polymorphism in Korean Attention Deficit Hyperactivity Disorder)

  • 박태원;김붕년;임명호;유희정;강대희;정영철
    • 생물정신의학
    • /
    • 제11권2호
    • /
    • pp.146-154
    • /
    • 2004
  • Objective:Attention deficit hyperactivity disorder(ADHD) is the most common childhood psychiatric disorder, affecting 3-5% of school-aged children. Although the biological basis of ADHD is unknown, family studies provide strong evidence that ADHD has a genetic basis. Recent genetic studies have suggested associations between ADHD and serotonin 1B(5HT1B) receptor gene G861C polymorphism. The aim of this study is to test for the association between ADHD and 5HT1B receptor gene G861C polymorphism in Korean population. Method:We processed DNA extraction and genotyping. 106 Korean children with ADHD and their parents were analyzed using the transmission disequilibrium test(TDT) and haplotype-based haplotype relative risk (HHRR). And the ADHD children were compared with 212 age and gender matched normal controls. Results:There was no statistical difference of distributions between ADHD cases and controls. We did not observe any preferential transmission of alleles of 5HT1B receptor gene G861C polymorphism in ADHD. Conclusions:Though there is the possibility of failing to detect small genetic effects, our results show no evidence of an association between ADHD and 5HT1B receptor gene G861C polymorphism in the Korean population and indicate that it is unlikely that the 5HT1B receptor is implicated in the susceptibility to ADHD.

  • PDF

Layer-specific serotonergic induction of long-term depression in the prefrontal cortex of rats

  • Shin, Dongchul;Cho, Kwang-Hyun;Joo, Kayoung;Rhie, Duck-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권6호
    • /
    • pp.517-527
    • /
    • 2020
  • Layer 2/3 pyramidal neurons (L2/3 PyNs) of the cortex extend their basal dendrites near the soma and as apical dendritic tufts in layer 1, which mainly receive feedforward and feedback inputs, respectively. It is suggested that neuromodulators such as serotonin and acetylcholine may regulate the information flow between brain structures depending on the brain state. However, little is known about the dendritic compartment-specific induction of synaptic transmission in single PyNs. Here, we studied layer-specific serotonergic and cholinergic induction of long-term synaptic plasticity in L2/3 PyNs of the agranular insular cortex, a lateral component of the orbitofrontal cortex. Using FM1-43 dye unloading, we verified that local electrical stimulation to layers 1 (L1) and 3 (L3) activated axon terminals mostly located in L1 and perisomatic area (L2/3). Independent and AMPA receptor-mediated excitatory postsynaptic potential was evoked by local electrical stimulation of either L1 or L3. Application of serotonin (5-HT, 10 μM) induced activity-dependent longterm depression (LTD) in L2/3 but not in L1 inputs. LTD induced by 5-HT was blocked by the 5-HT2 receptor antagonist ketanserin, an NMDA receptor antagonist and by intracellular Ca2+ chelation. The 5-HT2 receptor agonist α-me-5-HT mimicked the LTD induced by 5-HT. However, the application of carbachol induced muscarinic receptor-dependent LTD in both inputs. The differential layer-specific induction of LTD by neuromodulators might play an important role in information processing mechanism of the prefrontal cortex.

5-Hydroxytryptamine Inhibits Glutamatergic Synaptic Transmission in Rat Corticostriatal Brain Slice

  • Cho, Hyeong-Seok;Choi, Se-Joon;Kim, Ki-Jung;Lee, Hyun-Ho;Kim, Seong-Yun;Cho, Young-Jin;Sung, Ki-Wug
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제9권5호
    • /
    • pp.255-262
    • /
    • 2005
  • Striatum is involved in the control of movement and habitual memory. It receives glutamatergic input from wide area of the cerebral cortex as well as an extensive serotonergic (5-hydroxytryptamine, 5-HT) input from the raphe nuclei. In our study, the effects of 5-HT on synaptic transmission were studied in the rat corticostriatal brain slice using in vitro whole-cell recording technique. 5-HT inhibited the amplitude as well as frequency of spontaneous excitatory postsynaptic currents (sEPSC) significantly, and neither ${\gamma}-aminobutyric$ acid (GABA)A receptor antagonist bicuculline (BIC), nor $N-methyl-_{D}-aspartate$ (NMDA) receptor antagonist, $_{DL}-2-amino-5-phosphonovaleric$ acid (AP-V) could block the effect of 5-HT. In the presence non-NMDA receptor antagonist, 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenxo[f] quinoxaline-7-sulfonamide (NBQX), the inhibitory effect of 5-HT was blocked. We also figured out that 5-HT change the channel kinetics of the sEPSC. There was a significant increase in the rise time during the 5-HT application. Our results suggest that 5-HT has an effect on both pre- and postsynaptic site with decreasing neurotransmitter release probability of glutamate and decreasing the sensitivity to glutamate by increasing the rise time of non-NMDA receptor mediated synaptic transmission in the corticostriatal synapses.