• Title/Summary/Keyword: 5-DOF

Search Result 309, Processing Time 0.028 seconds

Reclamation of Effluent Textile Wastewater Using Micro/nano Bubbles-Dissolved Ozone Flotation Process (초미세기포-용존오존부상(DOF)공정을 이용한 염색폐수 처리수의 재이용)

  • Jung, Byung-Gil;Lee, Ki-Hyung;Jung, Jin-Hee;Jang, Seong-Ho;Cho, Do-Hyun;Sung, Nak-Chang
    • Journal of Environmental Science International
    • /
    • v.20 no.3
    • /
    • pp.291-299
    • /
    • 2011
  • The main objectives of this research are to investigate characteristics of ozone solubility due to low solubility of conventional bubbles-ozone generators, evaluate the treatment characteristics of reclaiming textile wastewater for industrial water by means of micro/nano bubbles-dissolved ozone flotation(MNB-DOF) process. The textile wastewater used in this research was obtained from final effluent of the textile wastewater in B city. There is a 400L reactor which consists of a micro-nano bubble system and a ozone generator for experiments. As a result of generating micro-nano bubbles (below $0.5{\mu}m$) by using of MNB-DOF process, it improved ozone solubility due to higher ozone transfer rates. Consequently, the shorter ozonation time clearly indicates the lower power costs. The reported results clearly indicated that MNB-DOF process can be effectively and inexpensively. Results of the experiments through MNB-DOF process in this study satisfy all reclaiming standards as industrial water: pH 6.5~8.5, SS 10 mg/L or below, $BOD_5$) 6 mg/L or below, turbidity 10 NTU or below, Coliforms 1,000/100 mL or below. Therefore there is a possibility of the reclaiming of the textile wastewater as industrial water.

Free vibration of a rectangular plate with an attached three-degree-of-freedom spring-mass system

  • Febbo, M.;Bambill, D.V.;Rossi, R.E.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.5
    • /
    • pp.637-654
    • /
    • 2011
  • The present paper studies the variation of the natural frequencies and mode shapes of rectangular plates carrying a three degree-of-freedom spring-mass system (subsystem), when the subsystem changes (stiffness, mass, moment of inertia, location). An analytical approach based on Lagrange multipliers as well as a finite element formulation are employed and compared. Numerically reliable results are presented for the first time, illustrating the convenience of using the present analytical method which requires only the solution of a linear eigenvalue problem. Results obtained through the variation of the mass, stiffness and moment of inertia of the 3-DOF system can be understood under the effective mass concept or Rayleigh's statement. The analysis of frequency values of the whole system, when the 3-DOF system approaches or moves away from the center, shows that the variations depend on each particular mode of vibration. When the 3-DOF system is placed in the center of the plate, "new" modes are found to be a combination of the subsystem's modes (two rotations, traslation) and the bare plate's modes that possess the same symmetry. This situation no longer exists as the 3-DOF system moves away from the center of the plate, since different bare plate's modes enable distinct motions of the 3-DOF system contributing differently to the "new' modes as its location is modified. Also the natural frequencies of the compound system are nearly uncoupled have been calculated by means of a first order eigenvalue perturbation analysis.

Dynamics Analysis and Simulation of a Passive Suspension System Using 7 DOF Full Car Model (7 DOF 차량 모델을 이용한 자동차 현가장치 동력학 해석 및 시뮬레이션에 관한 연구)

  • 노태수;정길도;홍동표
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.31-41
    • /
    • 1997
  • Equations of motion for a 7 DOF full car model is developed in detail and used for the design of LQR based active suspension system. The frequency response to road disturbance input and the motion of a car passing unequal bumps were used to analyzed the dynamic characteristics of the 7 DOF full car with passive or active suspensions. The resulting linear equations of motion may be usefull in designing other types of active suspension.

  • PDF

Impact Analysis For a 2-DOF Shock Absorbing System with Multi-Step Damping Coefficient (다단계 감쇠계수를 갖는 2자유도계 충격흡수장치의 충격해석)

  • 김성윤;심재준;한동섭;안성찬;한근조;안찬우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.871-874
    • /
    • 2002
  • Many malfunctions take place in container crane spreader due to impact. So we designed a 2DOF hydraulic impact absorbing system with multi-step damping coefficient and studied the effect of orifice's interval and damping coefficient. The damping coefficient of upper piston was found to be 180 N.s/m, and the orifice's interval to be 9mm, the max reaction force and the average reaction force might be lowest. Compared with a general 2-DOF impact absorbing system, the max reaction force reduced by 46%., and average reaction force reduced by 5%.

  • PDF

Development of Human Body Vibration Model Including Wobbling Mass (Wobbling Mass를 고려한 인체 진동 모텔의 개발)

  • 김영은;백광현;최준희
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.193-200
    • /
    • 2002
  • Simple spring-damper-mass models have been widely used to investigate whole-body vortical biodynamic response characteristics of the seated vehicle driver. Most previous models have not considered the effect of wobbling masses; i.e. heart, lungs, liver, intestine, etc. In this study, 4 -DOF seated driver model including one non-rigid mass representing wobbling visceral mass, 5-DOF model including intestine, and 10-DOF model including five lumbar vertebral masses were proposed. The model parameters were identified by a combinatorial optimization technique. simulated annealing method. The objective function was chosen as the sum of error between model response of seat-to-head transmissibility and driving point mechanical impedance and those of experimental data for subjects seated erect without backrest support. The model response showed a good agreement with the experimental response characteristics. Using a 10-DOF model, calculated resonance frequency of lumbar spine at 4Hz was matched well with experimental results of Panjabi et al.

A Vector-Controlled PMSM Drive with a Continually On-Line Learning Hybrid Neural-Network Model-Following Speed Controller

  • EI-Sousy Fayez F. M.
    • Journal of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.129-141
    • /
    • 2005
  • A high-performance robust hybrid speed controller for a permanent-magnet synchronous motor (PMSM) drive with an on-line trained neural-network model-following controller (NNMFC) is proposed. The robust hybrid controller is a two-degrees-of-freedom (2DOF) integral plus proportional & rate feedback (I-PD) with neural-network model-following (NNMF) speed controller (2DOF I-PD NNMFC). The robust controller combines the merits of the 2DOF I-PD controller and the NNMF controller to regulate the speed of a PMSM drive. First, a systematic mathematical procedure is derived to calculate the parameters of the synchronous d-q axes PI current controllers and the 2DOF I-PD speed controller according to the required specifications for the PMSM drive system. Then, the resulting closed loop transfer function of the PMSM drive system including the current control loop is used as the reference model. In addition to the 200F I-PD controller, a neural-network model-following controller whose weights are trained on-line is designed to realize high dynamic performance in disturbance rejection and tracking characteristics. According to the model-following error between the outputs of the reference model and the PMSM drive system, the NNMFC generates an adaptive control signal which is added to the 2DOF I-PD speed controller output to attain robust model-following characteristics under different operating conditions regardless of parameter variations and load disturbances. A computer simulation is developed to demonstrate the effectiveness of the proposed 200F I-PD NNMF controller. The results confirm that the proposed 2DOF I-PO NNMF speed controller produces rapid, robust performance and accurate response to the reference model regardless of load disturbances or PMSM parameter variations.

The comparison of the output characteristics of 2-DOF PID controller in the multivariable flow control system with delayed time (지연시간을 갖는 다변수 유량제어 시스템의 2-자유도 PID 제어기 특성 비교)

  • Kim, Dong-Hwa
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.6
    • /
    • pp.744-752
    • /
    • 1999
  • In this paper, we studied the response characteristics of $\alpha$, $\beta$ separated type, combined type, PI typed, and feedforward type in 2DOF-PID controller through the simulation and the experiments designed with the multivariable flow control system. The parameters $\alpha$ and $\beta$ give an affect to characteristics of controller in separated type but $\gamma$ does not give an affect to the characteristics of 2-DOF PID. The more $\beta$ increases, the more overshoot decreases and especially, in case of PI type represent clearly. The $\alpha$, $\beta$ separated type has a very small overshoot and its magnitudes in 2-DOF PID onctroller increases in order of $\alpha$, $\beta$ combined type, PI type, feedforward type, conventional type. The response characteristics of simulation are similar to that of experiments but the experimental characteristics in the multivariable flow control system has the delayed response. The time delay of response in experiments depends on 2-DOF parameter $\alpha$, $\beta$, $\gamma$ and the overshoot increase as the $\alpha$, $\beta$, $\gamma$ increase. So, we can have a satisfactory response by tuning D gain.

  • PDF

Modeling of Automobile Suspension System for Analyzing Automobile Vibration (자동차 진동해석을 위한 자동차 현가계의 모델링)

  • Lee, Tae-keun;Kim, Byong-sam
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.2 s.95
    • /
    • pp.135-147
    • /
    • 2005
  • As automobile technology advances, a smoother ride with less noise is desired. In order to achieve these purposes, a study on the vibration and noise produced by a moving automobile was carried out and a model for tire vibration characteristics which influence the ride performance was developed. The model was verified through simulations and experiments. The developed model was then applied to a half car model and automobile vibrations were analyzed. The effects of tire design parameters on the automobile vibration energy were investigated. The results from laboratory and field tests confirm the validity of the analytical model. The 17-DOF half-car model was built to analyze automobile vibration. The characteristics of the nonlinear model for a shock absorber were applied to this model. The results from the present 17-DOF half car model incorporating the analytical tire model with tire design parameters, were compared with the 5-DOF half car model where the tire was modeled with linear springs. The results of the 17-DOF model are close to the experimental results. Using the 17-DOF model, the influence of tire design parameter were considered. According to the analysis results, the vibrations at seat/body/wheel were predicted by simulation and experiment.

Simulation-Based Determination of Hydrodynamic Derivatives and 6DOF Motion Analysis for Underwater Vehicle (시뮬레이션 기반 수중 운동체의 유체력 미계수 결정 및 6자유도 운동해석)

  • Go, Gwangsoo;Ahn, Hyung Taek;Ahn, Jin-Hyeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.371-377
    • /
    • 2017
  • This paper introduces a simulation-based determination method for hydrodynamic derivatives and 6DOF (degrees-offreedom) motion analysis for an underwater vehicle. Hydrodynamic derivatives were derived from second-order modulus expansion and composed of the added mass, and linear and nonlinear damping coefficients. The added mass coefficients were analytically obtained using the potential theory. All of the linear and nonlinear damping coefficients were determined using CFD simulation, which were performed for various cases based on the actual operating condition. Then, the linear and nonlinear damping coefficients were determined by fitting the CFD results, which referred to 6DOF forces and moments acting on an underwater vehicle, with the least square method. To demonstrate the applicability of the current study, 6DOF simulations for three different scenarios (L-, U-, and S-turn) were carried out, and the results were validated on the basis of physical plausibility.

Stiffness Analysis of a Low-DOE Parallel Manipulator using the Theory of Reciprocal Screws (역나선 이론을 이용한 저자유도 병렬형 기구의 강성해석)

  • Kim Han Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.5 s.236
    • /
    • pp.680-688
    • /
    • 2005
  • This paper presents a methodology for the stiffness analysis of a low-DOF parallel manipulator. A low-DOF parallel manipulator is a spatial parallel manipulator which has less than six degrees of freedom. The reciprocal screws of actuations and constraints in each leg can be determined by making use of the theory of reciprocal screws, which provide information about reaction forces due to actuations and constraints. When pure farce is applied to a leg, the leg stiffness is modeled as a linear spring along the line. For pure couple, it is modeled as a rotational spring about the axis. It is shown that the stiffness model of an it_DOF parallel nipulator consists of F springs related to actuations and 6-F springs related to constraints connected from the moving platform to the base in parallel. The 6x f Cartesian stiffness matrix is derived, which is the sum of the Cartesian stiffness matrices of actuations and constraints. Finally, the 3-UPU, 3-PRRR, and Tricept parallel manipulators are used as examples to demonstrate the methodology.