• Title/Summary/Keyword: 5-D PIV

Search Result 68, Processing Time 0.021 seconds

Experimental Study on Flow Characteristics of ERF by using PIV Technique (PIV 기법을 이용한 ER 유체의 유동특성에 관한 실험적 연구)

  • 장태현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.116-123
    • /
    • 2004
  • An experimental investigation was performed to study the characteristics of ER (Electro-Rheological) fluid flow in a horizontal rectangular tube with or without D.C volatage. To determine some characteristics of the ER flow. 2D PIV(Particle Image Velocimetry) technique is employed for velocity measurement. This research found the mean velocity distribution with 0 kV/mm. 1.0kV/mm and 1 5kV/mm for Re=0, 0.62, 1.29 and 2.26. When the strength of the electric field increased. the claster of ERF are clearly strong along the test tube and the flow rate decreased.

Flow control on the near wake of a circular cylinder attached with control rods (제어봉 부착에 따른 원형실린더 근접 후류 유동제어에 관한 실험적 연구)

  • Gim, Ok-Sok;Lee, Gyoung-Woo
    • Journal of Navigation and Port Research
    • /
    • v.32 no.6
    • /
    • pp.453-458
    • /
    • 2008
  • Flow characteristics of the control-rod-attached 2-dimensional circular cylinder was accomplished using by PIV techniques. model tests had been carried out with different diameters of control rods(d/D=0.1 through d/D=0.5). and the Reynolds number Re=15,000 based on the cylinder diameter(D=50mm) to predict the performance of the model and the two-frame grey-level cross-correlation method had been used to obtain the velocity distribution in the flow field. 50mm circular cylinder had been used during the whole experiments and measured results had been compared with each other. The measured results have been compared with each case. therefore this article identifies not only the mean velocity profiles but also the control effects of the control rods.

PIV measurement of step cavity with driven flow (구동류를 갖는 계단 캐비티의 PIV계측)

  • 조대환;김진구;이영호
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.113-119
    • /
    • 1998
  • An experimental study was carried out in a three-dimensional cubic cavity driven by 2-dimensional plane Poiseuille flow for three kinds of Reynolds number, $10^4$, 3 $\times$ $10^4$ and 5 $\times$ $10^4$ based on the cavity width and cavity inlet mean flow velcoity. Instant simultaneous velocity vectors at whole field were measured by 2-D PIV system. Laser based illumination and two-frame grey-level cross correlation algorithm are adopted. Severe unsteady flow fluctuation within the cavity are remarkable at above Re = 3 $\times$ $10^4$ Reynolds numbers and sheared mixing layer phenomena are also found at the region where inlet driving Poiseuille flow is collided with the clock-wise rotating main primary vortex at upper center area. Instant velocity profiles reveal that deformed forced vortex formation is observed throughout the separate two areas.

  • PDF

Development of PIV System by Image Board (이미지 보오드를 이용한 PIV시스템의 개발)

  • Cho, Dae-Hwan;Choi, Jang-Un;Doh, Deok-Hui;Lee, Yeong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.5
    • /
    • pp.30-38
    • /
    • 1996
  • A PIV system consisting of an image board slit into personal computer and 2-D sheet light projector is developed and related techniques to improve its performance are discussed. A grey-level cross correlation method capable of overcoming particle seeding limitation is suggested. And a sub-pixed interpolation method in determining the vector terminal is preposed by considering 8-neighbours correlation distributing patterns. Furthermore, pressure estimation from the acquired velocity vectors by applying the Poisson equation is persented with reasonable feasibility. As a practical application of the present system, evaporator flows are analysed and attained instantaneous velocity vectors reveal that the flow phenomena maintain turbulent fluctuation.

  • PDF

3-D Velocity Fields Measurements of Propeller Wake Using a Stereoscopic PIV (Stereoscopic PIV기법을 이용한 프로펠러 후류의 3차원 속도장 측정)

  • Paik Bu-Geun;Lee Sang-Joon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.185-188
    • /
    • 2002
  • The objective of present paper is to apply a stereoscopic PIV(Particle Image Velocimetry) techiique for measuring the 3 dimensional flow structure of turbulent wake behind a marine propeller with 5 blades. It is essential to measure 3-components velocity fields for the investigation of complicated near-wake behind the propeller. The out-of-plane velocity component was measured using the particle images captured by two CCD cameras in the angular displacement configuration.400 instantaneous velocity fields were measured for each of few different blade phases of $0^{\circ},\;18^{\circ},\;36^{\circ}\;and\;54^{\circ}$. They were ensemble averaged to investigate the spatial evolution of the propeller wake in the region ranged from the trailing edge to the region of one propeller diameter(D) downstream. The phase-averaged velocity fields show the viscous wake formed by the boundary layers developed along the blade surfaces. Tip vortices were formed periodically and the slipstream contraction occurs in the near-wake region. The out-of-plane velocity component has large values at the tip and trailing votices. With going downstream, the axial turbulence intensity and the strength of tip vortices were decreased due to the visous dissipation, turbulence diffusion and blade-to-blade interaction. The blade wake traveling at higher speed with respect to the tip vortex overtakes and interacts with tip vortices formed from the previous blade. Tip vortices are separated from the wake and show oscillating trajectory

  • PDF

The Characteristic Investigation of the Flowfield around Two Circular Cylinders in the Tandem Arrangement Using the PIV (PIV를 이용한 직렬배열에서 2원주 주위의 유동장 특성 연구)

  • Ro, Ki-Deok;Kim, Kwang-Seok;Park, Ji-Tae;Oh, Se-Kyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.159-165
    • /
    • 2007
  • The Characteristics of the flowfield around two circular cylinders in tandem arrangement was investigated by PIV. Strouhal numbers. velocity vectors and velocity profiles were observed at centre-to-centre space ratios of P/D= 1.5. 2.0 and 2.5, and Reynolds number of $Re=3.0{\times}10^3{\sim}5.0{\times}10^3$. As the results the Strouhal numbers measured in the rear region of the cylinder of wake side were decreased with the space ratios. The flow between two cylinders was almost stagnated and the size of the stagnated region was larger in the close side than in the far side of the front cylinder. The direction of vortex between two cylinders was opposed each other with the small difference(${\alpha}\;{\pm}1.0^{\circ}$) of the attack angle ${\alpha}$.

Analysis on the Uncertainty Accompanied by PlV Velocity Measurements (PIV속도계측에 수반하는 UNCERTAINTY해석)

  • 이영호;최민선
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.71-74
    • /
    • 1991
  • Uncertainty analyses accompanied by the measurement of the velocity vectors in 3-D cavity flows are carried out. Twenty-one elemental errors are esimated or calculated according to the ANIS/ASME uncertainty analysis manual. Error components associater with the PIV(Particle Imaging Velocimetry) are reasonably small and the errors caused by the flow characteristics are fairly large, which confirm the reliability of the PIV measurement and also give good information to the planning phase of the experiment by discriminating the most critical parameter. The present study reveals that vector length expressed by pixels is the most influential. Calculated relative uncertainty for the all experimental conditions is ranging about 5-10% in terms of the representative velocity 0.5U. U is here the belt velocity on the cavity apparatus. Approximating equations to show the relative rss uncertainties are given and graphic representations are followed for the easier understanding of the uncertainty, existing in the velocity profiles of the cavity flow.

  • PDF

Towed underwater PIV measurement for free-surface effects on turbulent wake of a surface-piercing body

  • Seol, Dong Myung;Seo, Jeong Hwa;Rhee, Shin Hyung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.3
    • /
    • pp.404-413
    • /
    • 2013
  • In the present study, a towed underwater particle image velocimetry (PIV) system was validated in uniform flow and used to investigate the free-surface effects on the turbulent wake of a simple surface-piercing body. The selected test model was a cylindrical geometry formed by extruding the Wigley hull's waterplane shape in the vertical direction. Due to the constraints of the two-dimensional (2D) PIV system used for the present study, the velocity field measurements were done separately for the vertical and horizontal planes. Using the measured data at several different locations, it was possible to identify the free-surface effects on the turbulent wake in terms of the mean velocity components and turbulence quantities. In order to provide an accuracy level of the data, uncertainty assessment was done following the International Towing Tank Conference standard procedure.

PIV Analysis of Free Surface Effects on Flow Around a Rotating Propeller with Varying Water Depth (자유표면과 수심깊이가 회전하는 프로펠러 주위 유동에 미치는 영향에 대한 PIV 해석)

  • Paik, Bu-Geun;Lee, Jung-Yeop;Lee, Sang-Joon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.5 s.143
    • /
    • pp.427-434
    • /
    • 2005
  • The free surface influenced the wake behind a rotating propeller and its effects were investigated experimentally in a circulating water channel with the variation of water depth. Instantaneous velocity fields were measured using two-frame PIV technique and ensemble-averaged to study the phase-averaged flow structure in the wake region. For an isolated propeller, the flow behind the propeller is affected only by the propeller rotation speed, the leading on the blades and the proximity of the propeller to the free surface. The phase-averaged mean velocity fields show that the potential wake and the viscous wake developed on the blade surfaces. The interaction between the tip vortices and the slipstream causes the oscillating trajectory of tip vortices. The presence of the free surface greatly affected the wake structure, especially for propeller immersion depth of 0.6D. At small immersion depths, the free surface modified the tip and trailing vortices and the slipstream flow structure downstream of X/D = 0.3 in the propeller wake.