• Title/Summary/Keyword: 5 precision point method

Search Result 97, Processing Time 0.03 seconds

Convergent Study of Personalized Modeling and 5-Axis Machining Technology Using Patellofemoral Bone DICOM Image (넙다리무릎뼈 의료용 디지털 영상 및 통신 표준 영상을 이용한 맞춤형 모델링과 5축 가공기술의 융합적 연구)

  • Yoon, Jae-Ho;Kim, Hyeong-Gyun
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.137-143
    • /
    • 2018
  • DICOM images of patellofemoral bones were converted into a stereolithography file, and a Unigraphics CAD program was used to create a CAD modeling in which there exists point, line and facet information. The modeling extraction of joint facets was performed by linking two adjacent points into lines in the stereolithography file by using the Unigraphics rapid spacing function and then linking the lines into facets to complete the entire modeling. This modeling extraction was performed based on the anatomical knowledge of joint facet directions. As a result, a personalized space modeling and solid modeling were produced for the joint facets of patellofemoral bones. This was followed by a CAM control computing operation of solid modeling on graphite materials and 5-axis machining of patellofemoral bones. That is the description of a method for a personalized implant modeling by using DICOM images of patellofemoral bones.

Location Prediction of Mobile Objects using the Cubic Spline Interpolation (3차 스플라인 보간법을 이용한 이동 객체의 위치 추정)

  • 안윤애;박정석;류근호
    • Journal of KIISE:Databases
    • /
    • v.31 no.5
    • /
    • pp.479-491
    • /
    • 2004
  • Location information of mobile objects is applied to vehicle tracking, digital battlefields, location based services, and telematics. Their location coordinates are periodically measured and stored in the application systems. The linear function is mainly used to estimate the location information that is not in the system at the query time point. However, a new method is needed to improve uncertainties of the location representation, because the location estimation by linear function induces the estimation error. This paper proposes an application method of the cubic spline interpolation in order to reduce deviation of the location estimation by linear function. First, we define location information of the mobile object moving on the two-dimensional space. Next, we apply the cubic spline interpolation to location estimation of the proposed data model and describe algorithm of the estimation operation. Finally, the precision of this estimation operation model is experimented. The experimentation comes out more accurate results than the method by linear function, although the proposed location estimation function uses the small amount of information. The proposed method has an advantage that drops the cost of data storage space and communication for the management of location information of the mobile objects.

A study of communication-based protection coordination for networked distribution system (네트워크 배전계통용 통신기반 보호협조에 관한 연구)

  • Kim, WooHyun;Chae, WooKyu;Hwang, SungWook;Lee, HakJu
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.1
    • /
    • pp.43-48
    • /
    • 2022
  • Although the distribution system has been structured as complicated as a mesh in the past, the connection points for each line are always kept open, so that it is operated as a radial distribution system (RDS). For RDS, the line utilization rate is determined according to the maximum load on the line, and the utilization rate is usually kept low. In addition, when a fault occurs in the RDS, a power outage of about 3 to 5 minutes occurs until the fault section is separated, and the healthy section is transferred to another line. To improve the disadvantages of the RDS, research on the construction of a networked distribution system (NDS) that linking multiple lines is in progress. Compared to the RDS, the NDS has advantages such as increased facility utilization, load leveling, self-healing, increased capacity connected to distributed generator, and resolution of terminal voltage drop. However, when a fault occurs in the network distribution system, fault current can flow in from all connected lines, and the direction of fault current varies depending on the fault point, so a high-precision fault current direction determination method and high-speed communication are required. Therefore, in this paper, we propose an accurate fault current direction determination method by comparing the peak value polarity of the fault current in the event of a fault, and a communication-based protection coordination method using this method.

Rule-based Speech Recognition Error Correction for Mobile Environment (모바일 환경을 고려한 규칙기반 음성인식 오류교정)

  • Kim, Jin-Hyung;Park, So-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.10
    • /
    • pp.25-33
    • /
    • 2012
  • In this paper, we propose a rule-based model to correct errors in a speech recognition result in the mobile device environment. The proposed model considers the mobile device environment with limited resources such as processing time and memory, as follows. In order to minimize the error correction processing time, the proposed model removes some processing steps such as morphological analysis and the composition and decomposition of syllable. Also, the proposed model utilizes the longest match rule selection method to generate one error correction candidate per point, assumed that an error occurs. For the purpose of deploying memory resource, the proposed model uses neither the Eojeol dictionary nor the morphological analyzer, and stores a combined rule list without any classification. Considering the modification and maintenance of the proposed model, the error correction rules are automatically extracted from a training corpus. Experimental results show that the proposed model improves 5.27% on the precision and 5.60% on the recall based on Eojoel unit for the speech recognition result.

Performance Analysis of Mapping Functions and Mean Temperature Equations for GNSS Precipitable Water Vapor in the Korean Peninsula

  • Park, Han-Earl;Yoo, Sung-Moon;Yoon, Ha Su;Chung, Jong-Kyun;Cho, Jungho
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.2
    • /
    • pp.75-85
    • /
    • 2016
  • The performance of up-to-date mapping functions and various mean temperature equations were analyzed to derive optimal mapping function and mean temperature equation when GNSS precipitable water vapor (PWV) was investigated in the Korean Peninsula. Bernese GNSS Software 5.2, which can perform high precision GNSS data processing, was used for accurate analysis, and zenith total delay (ZTD) required to calculate PWV was estimated via the Precise Point Positioning (PPP) method. GNSS, radiosonde, and meteorological data from 2009 to 2014 were acquired from Sokcho Observatory and used. ZTDs estimated by applying the global mapping function (GMF) and Vienna mapping function 1 (VMF1) were compared with each other in order to evaluate the performance of the mapping functions. To assess the performance of mean temperature equations, GNSS PWV was calculated by using six mean temperature equations and a difference with radiosonde PWV was investigated. Conclusively, accuracy of data processing was improved more when using VMF1 than using GMF. A mean temperature equation proposed by Wu (2003) had the smallest difference with that in the radiosonde in the analysis including all seasons. In summer, a mean temperature equation proposed by Song & Grejner-Brzezinska (2009) had the closest results with that of radiosonde. In winter, a mean temperature equation proposed by Song (2009) showed the closest results with that of radiosonde.

Experimental Applicability Evaluation for Renewal and Modification Task of Digital Topographic Map by Low-Cost Drone Acquired Images (저가형 드론영상을 이용한 수치지형도 수정·갱신업무 적용 가능성 실험 평가)

  • YUN, Bu-Yeol
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.4
    • /
    • pp.115-125
    • /
    • 2017
  • In current, as the release of national base map with an equivalent scale and accuracy for the whole territory areas in South Korea, rapid spatial information industry such as national land development, GIS, and car navigation are used in a variety of spatial information industry as decision making method, and a lot of research and policies are proposed for the wide expansion of spatial information industry. For this, as of 2013, it contributes to the latest trend of spatial information field in order to solve the problems for the latest trend of spatial information, replacing modification of base maps as dividing the whole territory to zone with policy transformation by ordinary modifications. Therefore, this paper evaluates the possibility of modification and renewal of national base maps(scale: 1:5,000) using drones which currently get the limelight from a variety of research fields and industries. In particular, as a result of overlapping orthophoto, 3D point clouds extracted from images acquired by low-cost drones, and digital maps which are applied for the tasks of modification and renewal, it presents 0.2m precision and 0.1m accuracy. This means that drone-based photorgammetry technique can be fully utilized in the tasks of digital map modification and renewal because it conforms the error range of work regulation in making the national base maps(scale 1: 5000).

Accurate Quality Control Method of Bone Mineral Density Measurement -Focus on Dual Energy X-ray Absorptiometry- (골밀도 측정의 정확한 정도관리방법 -이중 에너지 방사선 흡수법을 중심으로-)

  • Kim, Ho-Sung;Dong, Kyung-Rae;Ryu, Young-Hwan
    • Journal of radiological science and technology
    • /
    • v.32 no.4
    • /
    • pp.361-370
    • /
    • 2009
  • The image quality management of bone mineral density is the responsibility and duty of radiologists who carry out examinations. However, inaccurate conclusions due to lack of understanding and ignorance regarding the methodology of image quality management can be a fatal error to the patient. Therefore, objective of this paper is to understand proper image quality management and enumerate methods for examiners and patients, thereby ensuring the reliability of bone mineral density exams. The accuracy and precision of bone mineral density measurements must be at the highest level so that actual biological changes can be detected with even slight changes in bone mineral density. Accuracy and precision should be continuously preserved for image quality of machines. Those factors will contribute to ensure the reliability in bone mineral density exams. Proper equipment management or control methods are set with correcting equipment each morning and after image quality management, a phantom, recommended from the manufacturer, is used for ten to twenty-five measurements in search of a mean value with a permissible range of ${\pm}1.5%$ set as standard. There needs to be daily measurement inspections on the phantom or at least inspections three times a week in order to confirm the existence or nonexistence of changes in values in actual bone mineral density. in addition, bone mineral density measurements were evaluated and recorded following the rules of Shewhart control chart. This type of management has to be conducted for the installation and movement of equipment. For the management methods of inspectors, evaluation of the measurement precision was conducted by testing the reproducibility of the exact same figures without any real biological changes occurring during reinspection. Bone mineral density inspection was applied as the measurement method for patients either taking two measurements thirty times or three measurements fifteen times. An important point when taking measurements was after a measurement whether it was the second or third examination, it was required to descend from the table and then reascend. With a 95% confidence level, the precision error produced from the measurement bone mineral figures came to 2.77 times the minimum of the biological bone mineral density change. The value produced can be stated as the least significant change (LSC) and in the case the value is greater, it can be stated as a section of genuine biological change. From the initial inspection to equipment moving and shifter, management must be carried out and continued in order to achieve the effects. The enforcement of proper quality control of radiologists performing bone mineral density inspections which brings about the durability extensions of equipment and accurate results of calculations will help the assurance of reliable inspections.

  • PDF

Quality Assurance System for Determination of Center Position in X-ray and Proton Irradiation Fields using a Stainless Ball and Imaging Plates in Proton Therapy at PMRC

  • Yasuoka, Kiyoshi;Ishikawa, Satoko
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.189-191
    • /
    • 2002
  • In the proton therapy using a gantry system, periodical verification of iso-center position is very important to assure precision of patient positioning system at any gantry angles in proton treatment. In the gantry system, there are three different types of iso-center; 1) in a geometrical view, 2) in an X-ray beam's eye view, 3) in a proton beam's eye view. Idealistically, they would be an identical point. They could, however, be different points. It may be a source of errors in patient positioning. At PMRC, we have established a system of verification for iso-center positions using a stainless ball of 2-cm in diameter and an imaging plate. This system provides the relation among a center of a patient target position, a center of proton irradiation field, and/or a center of X-ray field in accuracy of 50$\square$m in the 2) and 3) views, as images of a center of the stainless ball and a center of a 100 mm${\times}$100 mm-aperture brass collimator recorded on the imaging plate, which is setup at 1-cm behind the ball. In addition, it provides simultaneously the images of the ball and the collimator on an imaging intensifier (II), which is setup downstream of the proton or X-ray beam. We present a method of quality assurance (QA) for calibration of iso-center position in a rotation gantry system at PMRC and the performance of this system. A proton beam position on the 1$\^$st/ scatterer in the nozzle of the gantry affects less sensitive (reduced by a factor of 1/5) to the results of the iso-center position. The effect is systematically correctable. The effect of the nozzle (or the collimator) position is less than 0.5 mm at the maximum extraction (390 mm).

  • PDF

The Usefulness According to the Incubation Time of PTH as Prediction Index of Hypocalcemia (저칼슘혈증 예측지표로서 부갑상선 호르몬 검사반응시간에 따른 유용성)

  • Au, Doo-Hee;Kim, Ji-Young;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.138-142
    • /
    • 2010
  • Purpose: PTH (parathyroid hormone) level is a useful index for prediction of hypocalcemia after thyroidectomy. The fast results are required for an early diagnosis of hypocalcemia. In this study, we evaluated the PTH change according to incubation time, and investigated the usefulness of hypocalcemia diagnosis of PTH results in early incubation time. Materials and Methods: The subjects were 131 patients who had taken the PTH test from July to August in 2009. All experiments were used IRMA method. PTH value were evaluated with the correlation between precision (10 times repeat) and recovery rate and at 0.5, 3, 6 and $18{\pm}2$ (below overnight) hours following incubation time. Data analysis was investigated with relationship of the sensitivity, specificity, PPV (positive predictive value) and accuracy. Results: The correlation was time-dependent with levels reaching $R^2$=0.987 at 0.5 hours, $R^2$=0.993 at 3 hours and $R^2$=0.996 at 6 hours compare to overnight levels. The precision (%CV${\pm}$SD) were $15.92{\pm}15.54$ at 0.5 hours, $6.91{\pm}7.38$ at 3 hours, $4.30{\pm}4.69$ at 6 hours and $4.59{\pm}2.59$ at overnight. The recovery rate (%Mean${\pm}$SD) were $96.8{\pm}5.44$ at 0.5 hours, $102.6{\pm}4.35$ at 3 hours, $100.7{\pm}2.56$ at 6 hours and $102.2{\pm}5.98$ at overnight. When 15 pg/ml of overnight density was set up as criteria, we measured the sensitivity, specificity and PPV, accuracy at 0.5, 3, 6 hours. The sensitivity was shown to 97.5% at all times. The specificity was 96.0% at 0.5 hours, 100% at 3 hours and 92.3% at 6 hours for control, respectively. The PPV was 86.6% at 0.5 hours, 100% at 3 hours and 92.8% at 6 hours. The accuracy was shown to 84.7% at 0.5 hours, 97.5% at 3 hours and 90.6% at 6 hours. These data were accompanied by a corresponding PTH value of overnight incubation time, which significantly correlated with early time results. Conclusion: The values of PTH at 3 hours has favorable the rate of concordance of 94.1% and may be useful for prediction of hypocalcemia, and it responses to overnight incubation PTH values. Therefore, This method may be an attractive alternative to proper treatment to stop symptom revelation by giving a calcium agent to the patient.

  • PDF

Estimation of Populations of Moth Using Object Segmentation and an SVM Classifier (객체 분할과 SVM 분류기를 이용한 해충 개체 수 추정)

  • Hong, Young-Ki;Kim, Tae-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.705-710
    • /
    • 2017
  • This paper proposes an estimation method of populations of Grapholita molestas using object segmentation and an SVM classifier in the moth images. Object segmentation and moth classification were performed on images of Grapholita molestas moth acquired on a pheromone trap equipped in an orchard. Object segmentation consisted of pre-processing, thresholding, morphological filtering, and object labeling process. The classification of Grapholita molestas in the moth images consisted of the training and classification of an SVM classifier and estimation of the moth populations. The object segmentation simplifies the moth classification process by segmenting the individual objects before passing an input image to the SVM classifier. The image blocks were extracted around the center point and principle axis of the segmented objects, and fed into the SVM classifier. In the experiments, the proposed method performed an estimation of the moth populations for 10 moth images and achieved an average estimation precision rate of 97%. Therefore, it showed an effective monitoring method of populations of Grapholita molestas in the orchard. In addition, the mean processing time of the proposed method and sliding window technique were 2.4 seconds and 5.7 seconds, respectively. Therefore, the proposed method has a 2.4 times faster processing time than the latter technique.