• Title/Summary/Keyword: 4D radiotherapy

Search Result 219, Processing Time 0.02 seconds

Imaging dose evaluations on Image Guided Radiation Therapy (영상유도방사선치료시 확인 영상의 흡수선량평가)

  • Hwang, Sun Boong;Kim, Ki Hwan;kim, il Hwan;Kim, Woong;Im, Hyeong Seo;Han, Su Chul;Kang, Jin Mook;Kim, Jinho
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • Purpose : Evaluating absorbed dose related to 2D and 3D imaging confirmation devices Materials and Methods : According to the radiographic projection conditions, absorbed doses are measured that 3 glass dosimeters attached to the centers of 0', 90', 180' and 270' in the head, thorax and abdomen each with Rando phantom are used in field size $26.6{\times}20$, $15{\times}15$. In the same way, absorbed doses are measured for width 16cm and 10cm of CBCT each. OBI(version 1.5) system and calibrated glass dosimeters are used for the measurement. Results : AP projection for 2D imaging check, In $0^{\circ}$ degree absorbed doses measured in the head were $1.44{\pm}0.26mGy$ with the field size $26.6{\times}20$, $1.17{\pm}0.02mGy$ with the field size $15{\times}15$. With the same method, absorbed doses in the thorax were $3.08{\pm}0.86mGy$ to $0.57{\pm}0.02mGy$ by reducing field size. In the abdomen, absorbed dose were reduced $8.19{\pm}0.54mGy$ to $4.19{\pm}0.09mGy$. Finally according to the field size, absorbed doses has decreased by average 5~12%. With Lateral projection, absorbed doses showed average 5~8% decrease. CBCT for 3D imaging check, CBDI in the head were $4.39{\pm}0.11mGy$ to $3.99{\pm}0.13mGy$ by reducing the width 16cm to 10cm. In the same way in thorax the absorbed dose were reduced $34.88{\pm}0.93(10.48{\pm}0.09)mGy$ to $31.01{\pm}0.3(9.30{\pm}0.09)mGy$ and $35.99{\pm}1.86mGy$ to $32.27{\pm}1.35mGy$ in the abdomen. With variation of width 16cm and 10cm, they showed 8~11% decrease. Conclusion : By means of reducing 2D field size, absorbed dose were decreased average 5~12% in 3D width size 8~11%. So that it is necessary for radiation therapists to recognize systematical management for absorbed dose for Imaging confirmation. and also for frequent CBCT, it is considered whether or not prescribed dose for RT refer to imaging dose.

  • PDF

Treatment Results of Preoperative Radiotherapy Alone vs. Preoperative Radiotherapy and Chemotherapy in Locally Advanced Rectal Cancer (국소진행된 직장암에서의 수술전 방사선치료 단독군과 방사선치료와 항암제 병용치료군의 치료성적)

  • Kim Jae Sung;Park Seoung Ho;Cho Moon June;Yoon Wan Hee;Bae Jin Sun;Jeong Hyun Yong;Song Kyu Sang
    • Radiation Oncology Journal
    • /
    • v.13 no.1
    • /
    • pp.33-40
    • /
    • 1995
  • Purpose : To assess the efficacy and toxicity of the preoperative radiotherapy with or without chemotherapy in locally advanced rectal cancer Methods : Forty three patients (clinically diagnosed stages above or equal to Astler-Coiler stage B2 without distant metastasis) were assigned to preoperative radiotherapy alone arm (n=16) or combined preoperative radiotherapy and chemotherapy arm (n=27). Preoperative radiotherapy of 4500 cGy to whole pel-vis +/-540 cGy boost to primary site and concurrent chemotherapy of 2 cycles of 5-FU (500 mg/$m^2$) and leucovorin (20 mg/$m^2$) were used. Fifteen patients of preoperative radiotherapy alone arm and 19 of combined arm received surgical resection after preoperative treatment. Results : During the preoperative treatment, no significant complication was developed in both groups. Pathologic results were as follows; complete remission 1, Bl 1, B2 6, C1 2, C2, 5 in preoperative radiotherapy alone arm and complete remission 2, Bl 8, B2 4, C2 3, D 2 in combined arm. Postoperative complications were delayed perineal wound healing in three patients, intestinal obstruction in three patients (one managed by conservative medical treatment, two by surgical treatment). Conclusion : The combined preoperative radiotherapy and chemotherapy arm was more effective in pathological response and lymph node negativity rate than the preoperative radiotherapy alone arm. Both the preoperative radiotherapy alone arm and the combined arm were generally well tolerated and did not result in an increased postoperative morbidity.

  • PDF

Dosimetric Comparison between Varian Halcyon Analytical Anisotropic Algorithm and Acuros XB Algorithm for Planning of RapidArc Radiotherapy of Cervical Carcinoma

  • Mbewe, Jonathan;Shiba, Sakhele
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.130-136
    • /
    • 2021
  • Purpose: The Halcyon radiotherapy platform at Groote Schuur Hospital was delivered with a factory-configured analytical anisotropic algorithm (AAA) beam model for dose calculation. In a recent system upgrade, the Acuros XB (AXB) algorithm was installed. Both algorithms adopt fundamentally different approaches to dose calculation. This study aimed to compare the dose distributions of cervical carcinoma RapidArc plans calculated using both algorithms. Methods: A total of 15 plans previously calculated using the AAA were retrieved and recalculated using the AXB algorithm. Comparisons were performed using the planning target volume (PTV) maximum (max) and minimum (min) doses, D95%, D98%, D50%, D2%, homogeneity index (HI), and conformity index (CI). The mean and max doses and D2% were compared for the bladder, bowel, and femoral heads. Results: The AAA calculated slightly higher targets, D98%, D95%, D50%, and CI, than the AXB algorithm (44.49 Gy vs. 44.32 Gy, P=0.129; 44.87 Gy vs. 44.70 Gy, P=0.089; 46.00 Gy vs. 45.98 Gy, P=0.154; and 0.51 vs. 0.50, P=0.200, respectively). For target min dose, D2%, max dose, and HI, the AAA scored lower than the AXB algorithm (41.24 Gy vs. 41.30 Gy, P=0.902; 47.34 Gy vs. 47.75 Gy, P<0.001; 48.62 Gy vs. 50.14 Gy, P<0.001; and 0.06 vs. 0.07, P=0.002, respectively). For bladder, bowel, and left and right femurs, the AAA calculated higher mean and max doses. Conclusions: Statistically significant differences were observed for PTV D2%, max dose, HI, and bowel max dose (P>0.05).

Clinical Impact of Patient's Head Position in Supraclavicular Irradiation of the Whole Breast Radiotherapy

  • Surega Anbumani;Lohith G. Reddy;Priyadarshini V;Sasikala P;Ramesh S. Bilimagga
    • Progress in Medical Physics
    • /
    • v.34 no.1
    • /
    • pp.10-13
    • /
    • 2023
  • Patients with breast cancer can be positioned with their head turned to the contra lateral side or with their head straight during the radiation therapy treatment set-up. In our hospital, patients with locally advanced breast cancer who were receiving radiation therapy have experienced swallowing difficulty after 2 weeks of irradiation. In this pilot study, the impact of head position on reducing dysphagia occurrence was dosimetrically evaluated. Patients were divided into two groups viz., HT (head turned to the contra lateral side of the breast) and HS (head straight) with 10 members in each. Treatment planning was performed, and the dosimetric parameters such as Dmin, Dmax, Dmean, V5, V10, V20, V30, V40, and V50 of both groups were extracted from the dose volume histogram (DVH) of esophagus. The target coverage in the supraclavicular fossa (SCF) region was analyzed using D95 and D98; moreover, the dose heterogeneity was assessed with D2 from the DVHs. The average values of the dose volume parameters were 27.6%, 58.6%, 35.4%, 19%, 13.8%, 14.1%, 11.8%, 8.4%, and 8.1% higher in the HT group compared with those in the HS group. Furthermore, for the SCF, the mean values of D98, D95, and D2 were 42.4, 47.5, and 54 Gy, respectively, in the HS group and 38.9, 45.35, and 55.5 Gy, respectively, in the HT group. This pilot study attempts to give a solution for the poor quality of life of patients after breast radiotherapy due to dysphagia. The findings confirm that the head position could play a significant role in alleviating esophageal toxicity without compromising tumor control.

Dose Planning Study of Target Volume Coverage with Intensity-Modulated Radiotherapy for Nasopharyngeal Carcinoma: Penang General Hospital Experience

  • Vincent Phua, Chee Ee;Tan, Boon Seang;Tan, Ai Lian;Eng, Kae Yann;Ng, Bong Seng;Ung, Ngie Min
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2243-2248
    • /
    • 2013
  • Background: To compare the dosimetric coverage of target volumes and organs at risk in the radical treatment of nasopharyngeal carcinoma (NPC) between intensity-modulated radiotherapy (IMRT) and three-dimensional conformal radiotherapy (3DCRT). Materials and Methods: Data from 10 consecutive patients treated with IMRT from June-October 2011 in Penang General Hospital were collected retrospectively for analysis. For each patient, dose volume histograms were generated for both the IMRT and 3DCRT plans using a total dose of 70Gy. Comparison of the plans was accomplished by comparing the target volume coverage (5 measures) and sparing of organs at risk (17 organs) for each patient using both IMRT and 3DCRT. The means of each comparison target volume coverage measures and organs at risk measures were obtained and tested for statistical significance using the paired Student t-test. Results: All 5 measures for target volume coverage showed marked dosimetric superiority of IMRT over 3DCRT. V70 and V66.5 for PTV70 showed an absolute improvement of 39.3% and 24.1% respectively. V59.4 and V56.4 for PTV59.4 showed advantages of 18.4% and 16.4%. Moreover, the mean PTV70 dose revealed a 5.1 Gy higher dose with IMRT. Only 4 out of 17 organs at risk showed statistically significant difference in their means which were clinically meaningful between the IMRT and 3DCRT techniques. IMRT was superior in sparing the spinal cord (less 5.8Gy), V30 of right parotid (less 14.3%) and V30 of the left parotid (less 13.1%). The V55 of the left cochlea was lower with 3DCRT (less 44.3%). Conclusions: IMRT is superior to 3DCRT due to its dosimetric advantage in target volume coverage while delivering acceptable doses to organs at risk. A total dose of 70Gy with IMRT should be considered as a standard of care for radical treatment of NPC.

Evaluation of the hybrid-dynamic conformal arc therapy technique for radiotherapy of lung cancer

  • Kim, Sung Joon;Lee, Jeong Won;Kang, Min Kyu;Kim, Jae-Chul;Lee, Jeong Eun;Park, Shin-Hyung;Kim, Mi Young;Lee, Seoung-Jun;Moon, Soo-Ho;Ko, Byoung-Soo
    • Radiation Oncology Journal
    • /
    • v.36 no.3
    • /
    • pp.241-247
    • /
    • 2018
  • Purpose: A hybrid-dynamic conformal arc therapy (HDCAT) technique consisting of a single half-rotated dynamic conformal arc beam and static field-in-field beams in two directions was designed and evaluated in terms of dosimetric benefits for radiotherapy of lung cancer. Materials and Methods: This planning study was performed in 20 lung cancer cases treated with the VERO system (BrainLAB AG, Feldkirchen, Germany). Dosimetric parameters of HDCAT plans were compared with those of three-dimensional conformal radiotherapy (3D-CRT) plans in terms of target volume coverage, dose conformity, and sparing of organs at risk. Results: HDCAT showed better dose conformity compared with 3D-CRT (conformity index: 0.74 ± 0.06 vs. 0.62 ± 0.06, p < 0.001). HDCAT significantly reduced the lung volume receiving more than 20 Gy (V20: 21.4% ± 8.2% vs. 24.5% ± 8.8%, p < 0.001; V30: 14.2% ± 6.1% vs. 15.1% ± 6.4%, p = 0.02; V40: 8.8% ± 3.9% vs. 10.3% ± 4.5%, p < 0.001; and V50: 5.7% ± 2.7% vs. 7.1% ± 3.2%, p < 0.001), V40 and V50 of the heart (V40: 5.2 ± 3.9 Gy vs. 7.6 ± 5.5 Gy, p < 0.001; V50: 1.8 ± 1.6 Gy vs. 3.1 ± 2.8 Gy, p = 0.001), and the maximum spinal cord dose (34.8 ± 9.4 Gy vs. 42.5 ± 7.8 Gy, p < 0.001) compared with 3D-CRT. Conclusions: HDCAT could achieve highly conformal target coverage and reduce the doses to critical organs such as the lung, heart, and spinal cord compared to 3D-CRT for the treatment of lung cancer patients.

Comparison of Three- and Four-dimensional Robotic Radiotherapy Treatment Plans for Lung Cancers (폐암환자의 종양추적 정위방사선치료를 위한 삼차원 및 사차원 방사선치료계획의 비교)

  • Chai, Gyu-Young;Lim, Young-Kyung;Kang, Ki-Mun;Jeong, Bae-Gwon;Ha, In-Bong;Park, Kyung-Bum;Jung, Jin-Myung;Kim, Dong-Wook
    • Radiation Oncology Journal
    • /
    • v.28 no.4
    • /
    • pp.238-248
    • /
    • 2010
  • Purpose: To compare the dose distributions between three-dimensional (3D) and four-dimensional (4D) radiation treatment plans calculated by Ray-tracing or the Monte Carlo algorithm, and to highlight the difference of dose calculation between two algorithms for lung heterogeneity correction in lung cancers. Materials and Methods: Prospectively gated 4D CTs in seven patients were obtained with a Brilliance CT64-Channel scanner along with a respiratory bellows gating device. After 4D treatment planning with the Ray Tracing algorithm in Multiplan 3.5.1, a CyberKnife stereotactic radiotherapy planning system, 3D Ray Tracing, 3D and 4D Monte Carlo dose calculations were performed under the same beam conditions (same number, directions, monitor units of beams). The 3D plan was performed in a primary CT image setting corresponding to middle phase expiration (50%). Relative dose coverage, D95 of gross tumor volume and planning target volume, maximum doses of tumor, and the spinal cord were compared for each plan, taking into consideration the tumor location. Results: According to the Monte Carlo calculations, mean tumor volume coverage of the 4D plans was 4.4% higher than the 3D plans when tumors were located in the lower lobes of the lung, but were 4.6% lower when tumors were located in the upper lobes of the lung. Similarly, the D95 of 4D plans was 4.8% higher than 3D plans when tumors were located in the lower lobes of lung, but was 1.7% lower when tumors were located in the upper lobes of lung. This tendency was also observed at the maximum dose of the spinal cord. Lastly, a 30% reduction in the PTV volume coverage was observed for the Monte Carlo calculation compared with the Ray-tracing calculation. Conclusion: 3D and 4D robotic radiotherapy treatment plans for lung cancers were compared according to a dosimetric viewpoint for a tumor and the spinal cord. The difference of tumor dose distributions between 3D and 4D treatment plans was only significant when large tumor movement and deformation was suspected. Therefore, 4D treatment planning is only necessary for large tumor motion and deformation. However, a Monte Carlo calculation is always necessary, independent of tumor motion in the lung.

Postoperative Adjuvant Radiotherapy for Patients with Gastric Adenocarcinoma

  • Lim, Do Hoon
    • Journal of Gastric Cancer
    • /
    • v.12 no.4
    • /
    • pp.205-209
    • /
    • 2012
  • In gastric adenocarcinoma, high rates of loco-regional recurrences have been reported even after complete resection, and various studies have been tried to find the role of postoperative adjuvant therapy. Among them, Intergroup 0116 trial was a landmark trial, and demonstrated the definite survival benefit in adjuvant chemoradiotherapy, compared with surgery alone. However, the INT 0116 trial had major limitation for global acceptance of the INT 0116 regimen as an adjuvant treatment modality because of the limited lymph node dissection. Lately, several randomized studies that were performed to patients with D2-dissected gastric cancer were published. This review summarizes the data about patterns of failure after surgical resection and the earlier prospective studies, including INT 0116 study. Author will introduce the latest studies, including ARTIST trial and discuss whether external beam radiotherapy should be applied to patients receiving extended lymph node dissection and adjuvant chemotherapy.

The Effectiveness of Volumetric Modulated arc Radiotherapy to Treat Patients with Metastatic Spinal Tumors

  • Park, Hyo-Kuk;Kim, Sungchul
    • International Journal of Contents
    • /
    • v.13 no.4
    • /
    • pp.12-15
    • /
    • 2017
  • Among the possible stereotactic body radiation therapy (SBRT) modalities used to treat patients with metastatic spinal tumors, this study compared Cyberknife, tomotherapy, and volumetric modulated arc radiotherapy (VMAT). We established treatment plans for each of them modality and quantitatively analyzed the dose evaluation factors of the dose-volume histogram (DVH) for all spinal bones, focusing on the tumor and spinal cord, in order to examine the usefulness of VMAT. For the treatment planning dose, the mean dose ($D_{max}$) and $D_{5%}$ showed statistical differences in the target dose, but no difference was shown in the spinal cord dose. For the DVH indices, tomotherapy showed the best performance was the best in terms of uniformity index, while VMAT showed better performance was better than the other two modalities in terms of the conformity index and the dose gradient index. VMAT had a much shorter treatment time than Cyberknife and tomotherapy. These findings suggest that VMAT FFF is the most effective therapy for SBRT of patients with metastatic spinal tumors for whom a high dose of radiation is prescribed.

The Role of Modern Radiotherapy Technology in the Treatment of Esophageal Cancer

  • Moon, Sung Ho;Suh, Yang-Gun
    • Journal of Chest Surgery
    • /
    • v.53 no.4
    • /
    • pp.184-190
    • /
    • 2020
  • Radiation therapy (RT) has improved patient outcomes, but treatment-related complication rates remain high. In the conventional 2-dimensional and 3-dimensional conformal RT (3D-CRT) era, there was little room for toxicity reduction because of the need to balance the estimated toxicity to organs at risk (OARs), derived from dose-volume histogram data for organs including the lung, heart, spinal cord, and liver, with the planning target volume (PTV) dose. Intensity-modulated RT (IMRT) is an advanced form of conformal RT that utilizes computer-controlled linear accelerators to deliver precise radiation doses to the PTV. The dosimetric advantages of IMRT enable better sparing of normal tissues and OARs than is possible with 3D-CRT. A major breakthrough in the treatment of esophageal cancer (EC), whether early or locally advanced, is the use of proton beam therapy (PBT). Protons deposit their highest dose of radiation at the tumor, while leaving none behind; the resulting effective dose reduction to healthy tissues and OARs considerably reduces acute and delayed RT-related toxicity. In recent studies, PBT has been found to alleviate severe lymphopenia resulting from combined chemo-radiation, opening up the possibility of reducing immune suppression, which might be associated with a poor prognosis in cases of locally advanced EC.