• Title/Summary/Keyword: 4A zeolite

Search Result 524, Processing Time 0.026 seconds

Factors Controlling Some Physicochemical Properties of Bentonite (벤토나이트의 물리-화학적 성질을 지배하는 요인분석)

  • 고상모;손병국;송민섭;박성환;이석훈
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.259-272
    • /
    • 2002
  • This study was tried to interpret the important major factors controlling some physicochemical properties by comparing mineralogical and physicochemical characteristics such as pH, cation exchange capacity, Methylene Blue adsorption amount, swelling, viscosity, strength (compressional and tensile), and surface area etc. Investigated bentonite samples are five Korean samples from Dusan, Naa, Oksan, Dongyang, and Yeonil deposits and two Japanese bentonites from Tsukinuno and Tomioka deposits which were formed under a similar geological environment of the Tertiary basin. Tsukinuno bentonite is only natural Na-type bentonite and the others are all Ca-type bentonites. Most of the properties are not explained by the montmorillonite content only though the most important factor controlling the physicochemical properties is the montmorillonite content. The layer charge of montmorillonite will strongly control cation exchange capacity and Methylene Blue adsorption. Zeolite bearing bentonites show the strong alkaline character and causes the increase of cation exchange capacity, however decrease swelling, viscosity and strengths. Pyrite bearing bentonites decrease green compressional strength and wet tensile strength. The exchangeable interlayer cations control some physicochemical properties. Na-type bentonite than Ca-type shows more strong alkaline character and much more advanced swelling and viscosity. Also the size and thickness of montmorillonite flakes seem to control some physicochemical properties. Bentonite mainly composed of montmorillonite of very thin and large flakes is characterized by the very high surface area, cation exchange capacity, viscosity, swelling, Methylene Blue adsorption, green compressional strength and wet tensile strength. Domestic Dusan bentonite shows the most excellent physicochemical properties, which is due to the high content(84%) and very well crystallinity of montmorillonite.

The Effect of HCl Gas on Selective Catalytic Reduction of Nitrogen Oxide (질소산화물의 선택적 환원 제거시 염화수소기체가 촉매에 미치는 영향)

  • Choung, Jin-Woo;Choi, Kwang-Ho;Seong, Hee-Je;Chai, Ho-Jung;Nam, In-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.609-617
    • /
    • 2000
  • This study is aimed at investigating an effect of HCl gas on selective reduction of NOx over a CuHM and $V_2O_5-WO_3/TiO_2$ catalyst. SCR process is the most effective method to remove NOx, but catalyst can be deactivated by the acidic gas such as HCl gas which is also included in flue gas from the incinerator. In dry condition of flue gas, the CuHM catalyst treated by HCl gas has shown higher NO removal activity than the fresh catalyst. The activity of the catalyst can be restored by treating at $500^{\circ}C$. On the contrary. $V_2O_5-WO_3/TiO_2$ catalyst is obviously deactivated by HCl and the deactivation increases in proportion to the concentration of HCl gas. The deactivated catalyst is not restored to it's original activity by heat treatment for regeneration. In wet flue gas stream, the CuHM catalyst has shown lower activity than fresh catalyst and $V_2O_5-WO_3/TiO_2$ catalyst was severely deactivated by HCl treatment. The activity loss of catalysts are mainly due to the decrease of Br$\ddot{o}$nsted acid site on the catalyst surface by $NH_3$ TPD. The change of BET surface area of CuHM catalyst after the reaction isn't observed but $V_2O_5-WO_3/TiO_2$ catalyst is observed. The amount of $Cu^{{+}{+}}$ and $V_2O_5$ is decreased after the reaction. From these results, it is expected that CuHM catalyst should be better than $V_2O_5-WO_3/TiO_2$ catalyst for its application to the incineration of flue gas.

  • PDF

Effect of Microbial Phytase in Low Phosphorus and Calcium Level Diet on the Performance and Nutrient Digestibility in Laying Hens (인과 칼슘의 수준이 낮은 산란계 사료 내 미생물 Phytase의 첨가가 생산성 및 영양소 소화율에 미치는 영향)

  • Min B.J.;Kwon O.S.;Lee W.B.;Son K.S.;Hong J.W.;Yang S.J.;Moon T.H.;Kim I.H.
    • Korean Journal of Poultry Science
    • /
    • v.32 no.1
    • /
    • pp.15-21
    • /
    • 2005
  • This Study was conducted to investigate the effects of microbial phytase in low phosphirus and calcium level diet on the performance and nutrient digestibility in laying hens. One hundred ninety two, 50 wks old, ISA brown commerical layers were used for 12 weeks feeding trial after 7-d adjustment period. Four dietary treatments included CON(control; Co.), P2 ($0.06\%$ Natuphos, BASF) and P3 ($0.06\%$ PHOSMAX, GENOFOCUS). Ca and available P concentrations of P1, P2 and P3 were 90 and $50\%$ of NRC recommecdations to accentuate difference in response to phytase availability. In whole period, egg production was not affected by treatments. At 12 weeks, egg weight was significantly increased in adding phytase treatments (P<0.05). Egg shell thickness was increased in P1, P2 and P3 treatments compared with control (P<0.05) at 9 weeks. Ca concentration of serum tended to decrease in P1 treatment without significant difference (P>0.05). Ca and P concentrations of tibia were higher in layers fed dietary phyrase than those fed control diet without significant difference (P>0.05). Digestibilities of DM, N and ash were improved in P1 treatment compared with P2 and P3 treatments (P<0.05). Ca and P digestibilities were the highest in P2 treatment (P>0.05), but was not significant difference between control and P1 treatments.

A Study on the Conservation State and Plans for Stone Cultural Properties in the Unjusa Temple, Korea (운주사 석조문화재의 보존상태와 보존방안에 대한 연구)

  • Sa-Duk, Kim;Chan-Hee, Lee;Seok-Won, Choi;Eun-Jeong, Shin
    • Korean Journal of Heritage: History & Science
    • /
    • v.37
    • /
    • pp.285-307
    • /
    • 2004
  • Synthesize and examine petrological characteristic and geochemical characteristic by weathering formation of rock and progress of weathering laying stress on stone cultural properties of Unjusa temple of Chonnam Hwasun county site in this research. Examine closely weathering element that influence mechanical, chemical, mineralogical and physical weathering of rocks that accomplish stone cultural properties and these do quantification, wish to utilize by a basic knowledge for conservation scientific research of stone cultural properties by these result. Enforced component analysis of rock and mineralogical survey about 18 samples (pyroclastic tuff; 7, ash tuff; 4, granite ; 4, granitic gneiss; 3) all to search petrological characteristic and geochemical characteristic by weathering of Unjusa temple precinct stone cultural properties and recorded deterioration degree about each stone cultural properties observing naked eye. Major rock that constitution Unjusa temple one great geological features has strike of N30-40W and dip of 10-20NE being pyroclastic tuff. This pyroclastic tuff is ranging very extensively laying center on Unjusa temple and stone cultural properties of precinct is modeled by this pyroclastic tuff. Stone cultural propertieses of present Unjusa temple precinct are accomplishing structural imbalance with serious crack, and because weathering of rock with serious biological pollution is gone fairly, rubble break away and weathering and deterioration phenomenon such as fall off of a particle of mineral are appearing extremely. Also, a piece of iron and cement mortar of stone cultural properties everywhere are forming precipitate of reddish brown and light gray being oxidized. About these stone cultural properties, most stone cultural propertieses show SD(severe damage) to MD(moderate damage) as result that record Deterioration degree. X-ray diffraction analysis result samples of each rock are consisted of mineral of quartz, orthoclase,plagioclase, calcite, magnetite etc. Quartz and feldspar alterated extremely in a microscopic analysis, and biotite that show crystalline form of anhedral shows state that become chloritization that is secondary weathering mineral being weathered. Also, see that show iron precipitate of reddish brown to crack zone of tuff everywhere preview rock that weathering is gone deep. Tuffs that accomplish stone cultural properties of study area is illustrated to field of Subalkaline and Peraluminous, $SiO_2$(wt.%) extent of samples pyroclastic tuff 70.08-73.69, ash tuff extent of 70.26-78.42 show. In calculate Chemical Index of Alteration(CIA) and Weathering Potential Index(WPI) about major elements extent of CIA pyroclastic tuff 55.05-60.75, ash tuff 52.10-58.70, granite 49.49-51.06 granitic gneiss shows value of 53.25-67.14 and these have high value gneiss and tuffs. WPI previews that is see as thing which is illustrated being approximated in 0 lines and 0 lines low samples of tuffs and gneiss is receiving esaily weathering process as appear in CIA. As clay mineral of smectite, zeolite that is secondary weathering produce of rock as result that pick powdering of rock and clothing material of stone cultural properties observed by scanning electron micrographs (SEM). And roots of lichen and spore of hyphae that is weathering element are observed together. This rock deep organism being coating to add mechanical weathering process of stone cultural properties do, and is assumed that change the clay mineral is gone fairly in stone cultural properties with these. As the weathering of rocks is under a serious condition, the damage by the natural environment such as rain, wind, trees and the ground is accelerated. As a counter-measure, the first necessary thing is to build the ground environment about protecting water invasion by making the drainage and checking the surrounding environment. The second thing are building hardening and extirpation process that strengthens the rock, dealing biologically by reducing lichens, and sticking crevice part restoration using synthetic resin. Moreover, it is assumed to be desirable to build the protection facility that can block wind, sunlight, and rain which are the cause of the weathering, and that goes well with the surrounding environment.