• Title/Summary/Keyword: 4-point Bending Strength

Search Result 236, Processing Time 0.027 seconds

Mechanical and Electrical Properties of Si-SiC Fabricated Using SiC-C Composite Powders Synthesized by Sol-gel Process (Sol-gel 법으로 합성된 SiC-C 복합분말을 사용하여 제조된 Si-SiC의 기계적 특성 및 전기저항 특성)

  • Youn, Sung Il;Cho, Gyung Sun;Youm, Mi Rae;Lim, Dae Soon;Park, Sang Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.459-465
    • /
    • 2014
  • In this study, Si-SiC composites were fabricated using a Si melt infiltration method using ${\beta}$-SiC/C composite powders synthesized by the carbothermal reduction of $SiO_2-C$ precursors made from a TEOS and a phenol resin. The purity of the synthesized SiC-C composite powders was higher than 99.9993 wt% and the average particle size varied from 4 to $6{\mu}m$ with increasing carbon contents of the $SiO_2-C$ precursors. It was found that the Si-SiC composites fabricated in this study consist of ${\beta}$-SiC and residual Si, without any trace of ${\alpha}$-SiC. The 3-point bending strengths of the fabricated Si-SiC composites were measured and found to be higher than 550 MPa, although the density of the fabricated Si-SiC composite was less than $2.9g/cm^3$. The bending strengths and the densities of the fabricated Si-SiC composites were found to decrease with increasing C/Si mole ratios in the SiC-C composite powders. The specific resistivities of the Si-SiC composites fabricated using the SiC-C composite powders were less than $0.018{\Omega}cm$. With increasing C content in the SiC-C composite powders used for the fabrication of Si-SiC composites, the specific resistivity of the Si-SiC composites was found to slightly increase from 0.0157 to $0.018{\Omega}cm$.

The effect of low temperature aging on the mechanical property & phase stability of Y-TZP ceramics

  • Kim, Hyung-Tae;Han, Jung-Suk;Yang, Jae-Ho;Lee, Jai-Bong;Kim, Sung-Hun
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.3
    • /
    • pp.113-117
    • /
    • 2009
  • STATEMENT OF PROBLEM. Recently Yttrium-stabilized tetragonal zirconia polycrystal (Y-TZP) has been introduced due to superior flexural strength and fracture toughness compared to other dental ceramic systems. Although zirconia has outstanding mechanical properties, the phenomenon of decrease in the life-time of zirconia resulted from degradation in flexural strength after low temperature aging has been reported. PURPOSE. The objective of this study was to investigate degradation of flexural strength of Y-TZP ceramics after various low temperature aging treatments and to evaluate the phase stability and micro-structural change after aging by using X-ray diffraction analysis and a scanning electron microscope (SEM). MATERIAL AND METHODS. Y-TZP blocks of Vita In-Ceram YZ (Vita Zahnfabrik, Bad $S\ddot{a}ckingen$, Germany) were prepared in 40 mm (length) $\times$ 4 mm (width) $\times$ 3 mm (height) samples. Specimens were artificially aged in distilled water by heat-treatment at a temperature of 75, 100, 125, 150, 175, 200, and $225^{\circ}C$ for 10 hours, in order to induce the phase transformation at the surface. To measure the mechanical property, the specimens were subjected to a four-point bending test using a universal testing machine (Instron model 3365; Instron, Canton, Mass, USA). In addition, X-ray diffraction analysis (DMAX 2500; Rigaku, Tokyo, Japan) and SEM (Hitachi s4700; Jeol Ltd, Tokyo, Japan) were performed to estimate the phase transformation. The statistical analysis was done using SAS 9.1.3 (SAS institute, USA). The flexural strength data of the experimental groups were analyzed by one-way analysis of variance and to detect statistically significant differences ($\alpha$= .05). RESULTS. The mean flexural strength of sintered Vita In-Ceram YZ without autoclaving was 798 MPa. When applied aging temperature at below $125^{\circ}C$ for 10 hours, the flexural strength of Vita In-Ceram YZ increased up to 1,161 MPa. However, at above $150^{\circ}C$, the flexural strength started to decrease. Although low temperature aging caused the tetragonal-to-monoclinic phase transformation related to temperature, the minimum flexural strength was above 700 MPa. CONCLUSION. The monoclinic phase started to appear after aging treatment above $100^{\circ}C$. With the higher aging temperature, the fraction of monoclinic phase increased. The ratio of monoclinic/tetragonal + monoclinic phase reached a plateau value, circa 75% above $175^{\circ}C$. The point of monoclinic concentration at which the flexural strength begins to decrease was between 12% and 54%.

Flexural Behavior of Large-Diameter Composite PHC pile Using In-Filled Concrete and Reinforcement (속채움 콘크리트와 철근으로 보강된 대구경 합성 PHC말뚝의 휨성능 평가)

  • Bang, Jin-Wook;Park, Chan-Kyu;Yang, Seong-Yeong;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.109-115
    • /
    • 2016
  • A demand of high bearing capacity of piles to resist heavy static loads has been increased. For this reason, the utilization of large diameter PHC piles including a range from 700 mm to 1,200 mm have been increased and applied to the construction sites in Korea recently. In this study, in order to increase the flexural strength capacity of the PHC pile, the large diameter composite PHC pile reinforced by in-filled concrete and reinforcement was developed and manufactured. All the specimens were tested under four-point bending setup and displacement control. From the strain behavior of transverse bar, it was found that the presence of transverse bar was effective against crack propagation and controlling crack width as well as prevented the web shear cracks. The flexural strength and mid-span deflection of LICPT specimens were increased by a maximum of 1.08 times and 1.19 times compared to the LICP specimens. This results indicated that the installed transverse bar is in an advantageous ductility performance of the PHC piles. A conventional layered sectional analysis for the pile specimens was performed to investigate the flexural strength according to the each used material. The calculated bending moment of conventional PHC pile and composite PHC pile, which was determined by P-M interaction curve, showed a safety factor 1.13 and 1.16 compared to the test results.

Experimental determination of tensile strength and KIc of polymer concretes using semi-circular bend (SCB) specimens

  • Aliha, M.R.M.;Heidari-Rarani, M.;Shokrieh, M.M.;Ayatollahi, M.R.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.6
    • /
    • pp.823-833
    • /
    • 2012
  • An experimental method was suggested for obtaining fracture toughness ($K_{Ic}$) and the tensile strength (${\sigma}_t$) of chopped strand glass fiber reinforced polymer concretes (PC). Semi-circular bend (SCB) specimens subjected to three-point bending were used for conducting the experiments on the PC material. While the edge cracked SCB specimen could be used to evaluate fracture toughness, the tensile strength was obtained from the un-cracked SCB specimen. The experiments showed the practical applicability of both cracked and un-cracked SCB specimens for using as suitable techniques for measuring $K_{Ic}$ and ${\sigma}_t$ in polymer concretes. In comparison with the conventional rectangular bend beam specimen, the suggested SCB samples need significantly less material due to its smaller size. Furthermore, the average values of ${\sigma}_t$ and $K_{Ic}$ of tested PC were approximately 3.5 to 4.5 times the corresponding values obtained for conventional concrete showing the improved strength properties of PC relative to the conventional concretes.

In vitro comparison of two different materials for the repair of urethan dimethacrylate denture bases

  • Cilingir, Altug;Bilhan, Hakan;Geckili, Onur;Sulun, Tonguc;Bozdag, Ergun;Sunbuloglu, Emin
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.4
    • /
    • pp.396-401
    • /
    • 2013
  • PURPOSE. The purpose of this in vitro study was to investigate the flexural properties of a recently introduced urethane dimethacrylate denture base material (Eclipse) after being repaired with two different materials. MATERIALS AND METHODS. Two repair groups and a control group consisting of 10 specimens each were generated. The ES group was repaired with auto-polymerizing polymer. The EE group was repaired with the Eclipse. The E group was left intact as a control group. A 3-point bending test device which was set to travel at a crosshead speed of 5 mm/min was used. Specimens were loaded until fracture occurred and the mean displacement, maximum load, flexural modulus and flexural strength values and standard deviations were calculated for each group and the data were statistically analyzed. The results were assessed at a significance level of P<.05. RESULTS. The mean "displacement", "maximum load before fracture", flexural strength" and "flexural modulus" rates of Group E were statistically significant higher than those of Groups ES and EE, but no significant difference (P>.05) was found between the mean values of Group ES and EE. There was a statistically significant positive relation (P<.01) between the displacement and maximum load of Group ES (99.5%), Group EE (94.3%) and Group E (84.4%). CONCLUSION. The more economic and commonly used self-curing acrylic resin can be recommended as an alternative repair material for Eclipse denture bases.

Evaluation of Thermal Degradation of CFRP Flexural Strength at Elevated Temperature (온도 상승에 따른 탄소 복합재의 굽힘 강도 저하 평가)

  • Hwang Tae-Kyung;Park Jae-Beom;Lee Sang-Yun;Kim Hyung-Geun;Park Byung-Yeol;Doh Young-Dae
    • Composites Research
    • /
    • v.18 no.2
    • /
    • pp.20-29
    • /
    • 2005
  • To evaluate the flexural deformation and strength of composite motor case above the glass transition temperature$(T_g),\;170^{\circ}C$, of resin material, a finite element analysis(FEA) model in which material non-linearity and progressive failure mode were considered was proposed. The laminated flexural specimens which have the same lay-up and thickness as the composite motor case were tested by 4-point bending test to verify the validity of FEA model. Also. mechanical properties in high temperature were evaluated to obtain the input values for FEA. Because the material properties related to resin material were highly deteriorated in the temperature range beyond $T_g$, the flexural stiffness and strength of laminated flexural specimen in $200^{\circ}C$ were degraded by also $70\%\;and\;80\%$ in comparison with normal temperature results. Above $T_g$, the failure mode was changed from progressive failure mode initiated by matrix cracking at $90^{\circ}$ ply in bottom side and terminated by delamination at the center line of specimen to fiber compressive breakage mode at top side. From stress analysis, the progressive failure mechanism was well verified and the predicted bending stiffness and strength showed a good agreement with the test results.

A Simplified Approach to the Analysis of the Ultimate Compressive Strength of Welded Stiffened Plates (용접된 보강판의 압축 최종 강도의 간이 해석법)

  • C.D. Jang;Seung-Il Seo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.2
    • /
    • pp.141-154
    • /
    • 1993
  • In this paper, a method to calculate the ultimate compressive strength of welded one-sided stiffened plates simply supported along all edges is proposed. At first initial imperfections such as distortions and residual stresses due to welding are predicted by using simplified methods. Then, the collapse modes of the stiffened plate are assumed and collapse loads for each mode are calculated. Among these loads, the lowest value is selected as the ultimate strength of the plate. Collapse modes are assumed as follows ; (1) Overall buckling of the stiffened plate$\rightarrow$Overall collapse due to stiffener bending (2) Local buckling of the plate part$\rightarrow$Local collapse of the plate part$\rightarrow$Overall collapse due to stiffener yielding (3) Local buckling of the plate part$\rightarrow$Overall collapse due to stiffener berthing (4) Local buckling of the plate part$\rightarrow$Local collapse of the plate part$\rightarrow$Overall collapse due to stiffener tripping. The elastic large deflection analysis based on the Rayleigh-Ritz method is carried out, and plastic analysis assuming hinge lines is also carried out. Collapse load is defined as the cross point of the two analysis curves. This method enables the utimate strength to be calculated with small computing time and a good accuracy. Using the present method, characteristics of the stiffener including torsional rigidity, bending and tripping can also be clarified.

  • PDF

Flexural Performance and Crack Damage Mitigation of Plain Concrete Beams Layered with Reinforced SHCC Materials with Polyethylene Fibers (폴리에틸렌 단일섬유를 혼입한 SHCC로 휨 보강된 콘크리트 보의 균열손상 제어 및 휨 성능)

  • Kim, June-Su;Lee, Young-Oh;Shim, Young-Yong;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.361-368
    • /
    • 2012
  • Required performance for repair materials are strength, ductility, durability and bonding with the substrate concrete. Various kinds of fiber-reinforced cement composites (FRCCs) have been developed and used as repair materials. Strain-hardening cement based composites (SHCC) is one of the effective repair materials that can be used to improve crack-damage tolerance of reinforced concrete (RC) structures. SHCC is a superior FRCC that has multiple cracking characteristic and pseudo strain-hardening behavior. The expansive admixture, which can be used to reduce shrinkage in SHCC materials with less workability by controlling interfacial bonding performance between SHCC and substrate concrete. For the application of SHCC as a repair material to RC structures, this study investigates the flexural performance of expansive SHCC-layered concrete beam. Test variables include the replacement levels of expansive admixture (0 and 10%), repair thickness (30 and 40 mm), and compressive strength of SHCC (30, 70 and 100 MPa). Four point bending tests on concrete beams strengthened with SHCCs were carried out to evaluate the contribution of SHCC on the flexural capacity. The result suggested that expansive SHCC materials can be used for repairing and strengthening of concrete infrastructures.

Fracture Charateristics of the Pre-Cracked fibrous Concrete Beams (前 龜裂을 준 鋼纖維 콘크리트보의 破壞特性)

  • Kwark, Kae-Hwan;Park, Jong-Gun;Park, Sai-Woong
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.2
    • /
    • pp.49-59
    • /
    • 1992
  • In our researches we made mix-design, with the mixing ratio and pre-cracked ratio of steel fibrous different from each other, building the steel fibrous concrete beam which had pre-cracks. To obtain the fracture characteristics of steel fibrous reinforced concrete, series of experiment were conducted on pre-cracked beam subjected to 3-point bending. Thus, we carried out experiments on the destructive characteristics of its pre-crack and post-crack and the result is as follows. 1. The compressive strength of steel fibrous concrete beam increased more slightly than plane beam, and the tensile strength increased 37%, 59%, 94% and 121% respectively when the amount of fibrous was 0.5%, 0.1% 1.5%, and 1.75% respectively. 2. As the amount of steel fibrous mixing increased ant the steel fibrous inhibited the crack growth, the crack condition of steel fibrous concrete beam was retarded irregularly, and this increased fracture load. 3. The defiance of destruction was reduced in the ratio of 1.35 times and 1.22 times respectively when the length of pre-crack was each 2cm and 4cm in comparison with the case of being without the length, and was similar to that of plane beam when the amount of steel fibrous mixing was below 1.0%, and increased linearly when it as above 1.0%. 4. The experimental formula seeking fracture energy was follows and thus we found that the value of fracture energy depended upon tensile strength and the size of speciment. $G_f=K\;{\cdot}\;f_f^'{\cdot}$da/Ec 5. We observed that in the load-strain curve of steel fibrous concrete beam the progress of the crack became slow, compared with plane beam because the crack condition became long to the extent of about 10 times. Concrete was faultiest brittleness fracture through the study, it was known ductile.

  • PDF

REINFORCEMENT OF ACRYLIC RESIN WITH METAL WIRE (금속 wire의 아크릴릭 레진 보강효과에 관한 연구)

  • Jeong, Chang-Mo;Jeon, Young-Chan;Lim, Chang-Sup
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.4
    • /
    • pp.823-832
    • /
    • 1996
  • The purpose of this study was to assess the effect of 1) the diameter(0.7,1.0,1.2mm) and number(1,2,3) of commonly available orthodontic metal wires embedded in self-curing orthodontic acrylic resin specimens($64{\times}10{\times}3mm$) and 2) the use of chemical adhesive system(Silicoater, Metalprimer) to prevent slipping at the interface between the resin and the metal wire on reinforcement by using three-point bending test. From this study, the following results were obtained. 1. No statistically significant difference was found among the transverse strengths for the control without reinforcement, one 0.7mm wire, two 0.7mm wires, three 0.7mm wires, and one 1.0mm wire groups(P>.05). 2. In the groups with 1.0 or 1.2mm wires, the transverse strength increased in proportion to the increase of number of wires(P<.05). 3. In the groups with 0.7 or 1.0mm wires, neither of Silicoater and Netalprimer increased the transverse strength significantly(P>.05). 4. No statistically significant difference was found in transverse strength between Silicoater groups and Metalprimer groups with same diameter of wires(P.>05). From these result, it is concluded that diameter of wires is a primary considering factor to reinforce the acrylic resin effectively and, when this requirement is satisfied, increased number of wires or chemical adhesive systems can be expected to produce the additional reinforcing effect.

  • PDF