• Title/Summary/Keyword: 4-f illumination optics

Search Result 4, Processing Time 0.024 seconds

Viewing Angle Enhancement of Light Direction Controllable Integral Imaging Three-dimensional Display System by Moving Aperture in 4-f Illumination Optics

  • Shin, Min-Young;Park, Jae-Hyeung;Kim, Nam
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1341-1344
    • /
    • 2009
  • A novel method to control the viewing direction by moving aperture location in 4-f illumination optics to control light direction is proposed. Based on integral imaging principle, the relayed point light sources by 4-f optics are modulated by a spatial light modulator, displaying three-dimensional images. In the proposed method, we locate the aperture, which acts as a band pass filter, around an optic axis to control the light direction. Resultantly, assuming that we know the viewer position by a tracking system, we can display appropriate three-dimensional images over large viewing angle.

  • PDF

Off-Axis Illumination (패턴 분해능 및 초점심도 향상에 대한 사입사 조명)

  • 박정보;이성묵
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.6
    • /
    • pp.453-461
    • /
    • 1999
  • In this paper, we have studied on the effects of annular and quadrupole illuminations by changing their conditions for enhancing the pattern resolution and depth of focus (OaF) in the optical lithography system using KrF Eximer laser 0.248$\mu$m and 0.65 NA. As a result, it is revealed that each illumination condition to optimize the resolution and the OaF for the mask containing the assistance pattern is different under the annular illumination. And in case of quadrupole illumination, we could ascertain that the resolution and the OaF would be enhanced through changing the arrangement of each pole from the conventional X type (45 degrees) to some proper type according to the main pattern direction. ction.

  • PDF

Five Mirror System Derived From the Numerical Solutions of all Zero 3rd Order Aberrations and Zero 5th Order Spherical Aberration for DUV Optical Lithography (모든 3차 수차와 5차 구면수차를 제거하여 얻은 극자외선 리소그라피용 5-반사광학계)

  • 이동희
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.373-380
    • /
    • 1993
  • A five mirror system with a reduction magnification(M=+1/5) is designed for DUV optical lithography. Initially, numerical solutions of all zero 3rd order aberrations and zero 5th order spherical aberration are obtained for the spherical mirror system. Next, by the optimization method, the aspherization is carried out to the two spherical mirrors to obtain a system that has as less residual aberrations, higher NA and improved MTF as possible. We have finally obtained the system of which NA is 0.45 and the resolution is about 500 cycles/mm at the 50% MTF value criterion and the depth of focus of $1.0{\mu}m$ for the nearly incoherent illumination$({\sigma}=1.0)$ and the wavelength of 0.248 m(KrF excimer laser line).

  • PDF

KrF 엑시머 레이저를 이용한 웨이퍼 스텝퍼의 제작 및 성능분석

  • 이종현;최부연;김도훈;장원익;이용일;이진효
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.1
    • /
    • pp.15-21
    • /
    • 1993
  • This paper describes the design and development of a KrF excimer laser stepper and discusses the detailed system parameters and characterization data obtained from the performance test. We have developed a deep UV step-and-repeat system, operating at 248 nm, by retrofitting a commercial modules such as KrF excimer laser, precision wafer stage and fused silica illumination and 5X projection optics of numerical aperture 0.42. What we have developed, to the basic structure, are wafer alignment optics, reticle alignment system, autofocusing/leveling mechanisms and environment chamber. Finally, all these subsystem were integrated under the control of microprocessor-based controllers and computer. The wafer alignment system comprises the OFF-AXIS and the TTL alignment. The OFF-AXIS alignment system was realized with two kinds of optics. One is the magnification system with the image processing technique and the other is He-Ne laser diffraction type system using the alignment grating on the wafer. 'The TTL alignment system employs a dual beam inteferometric method, which takes advantages of higher diffraction efficiency compared with other TTL type alignment systems. As the results, alignment accuracy for OFF-AXIS and TTL alignment system were obtained within 0.1 $\mu\textrm{m}$/ 3 $\sigma$ for the various substrate on the wafers. The wafer focusing and leveling system is modified version of the conventional systems using position sensitive detectors (PSD). This type of detection method showed focusing and leveling accuracies of about $\pm$ 0.1 $\mu\textrm{m}$ and $\pm$ 0.5 arcsec, respectively. From the CD measurement, we obtained 0.4 $\mu\textrm{m}$ resolution features over the full field with routine use, and 0.3 $\mu\textrm{m}$ resolution was attainable under more strict conditions.

  • PDF