• Title/Summary/Keyword: 4-dimensional computed tomography (4D CT)

Search Result 79, Processing Time 0.031 seconds

Synthetic Computed Tomography Generation while Preserving Metallic Markers for Three-Dimensional Intracavitary Radiotherapy: Preliminary Study

  • Jin, Hyeongmin;Kang, Seonghee;Kang, Hyun-Cheol;Choi, Chang Heon
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.172-178
    • /
    • 2021
  • Purpose: This study aimed to develop a deep learning architecture combining two task models to generate synthetic computed tomography (sCT) images from low-tesla magnetic resonance (MR) images to improve metallic marker visibility. Methods: Twenty-three patients with cervical cancer treated with intracavitary radiotherapy (ICR) were retrospectively enrolled, and images were acquired using both a computed tomography (CT) scanner and a low-tesla MR machine. The CT images were aligned to the corresponding MR images using a deformable registration, and the metallic dummy source markers were delineated using threshold-based segmentation followed by manual modification. The deformed CT (dCT), MR, and segmentation mask pairs were used for training and testing. The sCT generation model has a cascaded three-dimensional (3D) U-Net-based architecture that converts MR images to CT images and segments the metallic marker. The performance of the model was evaluated with intensity-based comparison metrics. Results: The proposed model with segmentation loss outperformed the 3D U-Net in terms of errors between the sCT and dCT. The structural similarity score difference was not significant. Conclusions: Our study shows the two-task-based deep learning models for generating the sCT images using low-tesla MR images for 3D ICR. This approach will be useful to the MR-only workflow in high-dose-rate brachytherapy.

Comparison of the observer reliability of cranial anatomic landmarks based on cephalometric radiograph and three-dimensional computed tomography scans (삼차원 전산화단층촬영사진과 측모두부 방사선규격사진의 계측자에 따른 계측오차에 대한 비교분석)

  • Kim, Jae-Young;Lee, Dong-Keun;Lee, Sang-Han
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.4
    • /
    • pp.262-269
    • /
    • 2010
  • Introduction: Accurate diagnosis and treatment planning are very important for orthognathic surgery. A small error in diagnosis can cause postoperative functional and esthetic problems. Pre-existing 2-dimensional (D) chephalogram analysis has a high likelihood of error due to its intrinsic and extrinsic problems. A cephalogram can also be inaccurate due to the limited anatomic points, superimposition of the image, and the considerable time and effort required. Recently, an improvement in technology and popularization of computed tomography (CT) provides patients with 3-D computer based cephalometric analysis, which complements traditional analysis in many ways. However, the results are affected by the experience and the subject of the investigator. Materials and Methods: The effects of the sources human error in 2-D cephalogram analysis and 3-D computerized tomography cephalometric analysis were compared using Simplant CMF program. From 2008 Jan to 2009 June, patients who had undergone CT, cephalo AP, lat were investigated. Results: 1. In the 3 D and 2 D images, 10 out of 93 variables (10.4%) and 11 out 44 variables (25%), respectively, showed a significant difference. 2. Landmarks that showed a significant difference in the 2 D image were the points frequently superimposed anatomically. 3. Go Po Orb landmarks, which showed a significant difference in the 3 D images, were found to be the artificial points for analysis in the 2 D image, and in the current definition, these points cannot be used for reproducibility in the 3 D image. Conclusion: Generally, 3-D CT images provide more precise identification of the traditional cephalometric landmark. Greater variability of certain landmarks in the mediolateral direction is probably related to the inadequate definition of the landmarks in the third dimension.

3-D CT Imaging of Pathological Bone Changes in a Rat Model of Adjuvant-Induced Arthritis

  • Shim, Kyung-Mi;Kim, Se-Eun;Kang, Seong-Soo
    • Journal of the Korean Society of Radiology
    • /
    • v.2 no.4
    • /
    • pp.41-46
    • /
    • 2008
  • Computed tomography (CT) is a medical imaging method employing tomography. CT is a 3-Dimensional (3-D) radiographic imaging technique, which is not suited for assessment of inflammation, but can be considered a reference method for assessment of bone damage, due to its direct 3-D visualization of calcified tissue. In this study of pathological joint changes in a rat model of adjuvant-induced arthritis (AIA) and quality analysis of bone destructions were performed by 3-Dimensional computed tomography images. These data demonstrate that the destructive progression of disease in a rat AIA model can be quantified using 3-D CT image analysis, which allows assessment of arthritic disease status and efficacy of experimental therapeutic agents.

  • PDF

Influence of slice thickness of computed tomography and type of rapid protyping on the accuracy of 3-dimensional medical model (CT절편두께와 RP방식이 3차원 의학모델 정확도에 미치는 영향에 대한 연구)

  • Um Ki-Doo;Lee Byung-Do
    • Imaging Science in Dentistry
    • /
    • v.34 no.1
    • /
    • pp.13-18
    • /
    • 2004
  • Purpose : This study was to evaluate the influence of slice thickness of computed tomography (CT) and rapid protyping (RP) type on the accuracy of 3-dimensional medical model. Materials and Methods: Transaxial CT data of human dry skull were taken from multi-detector spiral CT. Slice thickness were 1, 2, 3 and 4 mm respectively. Three-dimensional image model reconstruction using 3-D visualization medical software (V-works /sup TM/ 3.0) and RP model fabrications were followed. 2-RP models were 3D printing (Z402, Z Corp., Burlington, USA) and Stereolithographic Apparatus model. Linear measurements of anatomical landmarks on dry skull, 3-D image model, and 2-RP models were done and compared according to slice thickness and RP model type. Results: There were relative error percentage in absolute value of 0.97, 1.98,3.83 between linear measurements of dry skull and image models of 1, 2, 3 mm slice thickness respectively. There was relative error percentage in absolute value of 0.79 between linear measurements of dry skull and SLA model. There was relative error difference in absolute value of 2.52 between linear measurements of dry skull and 3D printing model. Conclusion: These results indicated that 3-dimensional image model of thin slice thickness and stereolithographic RP model showed relative high accuracy.

  • PDF

Difference in glenoid retroversion between two-dimensional axial computed tomography and three-dimensional reconstructed images

  • Kim, Hyungsuk;Yoo, Chang Hyun;Park, Soo Bin;Song, Hyun Seok
    • Clinics in Shoulder and Elbow
    • /
    • v.23 no.2
    • /
    • pp.71-79
    • /
    • 2020
  • Background: The glenoid version of the shoulder joint correlates with the stability of the glenohumeral joint and the clinical results of total shoulder arthroplasty. We sought to analyze and compare the glenoid version measured by traditional axial two-dimensional (2D) computed tomography (CT) and three-dimensional (3D) reconstructed images at different levels. Methods: A total of 30 cases, including 15 male and 15 female patients, who underwent 3D shoulder CT imaging was randomly selected and matched by sex consecutively at one hospital. The angular difference between the scapular body axis and 2D CT slice axis was measured. The glenoid version was assessed at three levels (midpoint, upper one-third, and center of the lower circle of the glenoid) using Friedman's method in the axial plane with 2D CT images and at the same level of three different transverse planes using a 3D reconstructed image. Results: The mean difference between the scapular body axis on the 3D reconstructed image and the 2D CT slice axis was 38.4°. At the level of the midpoint of the glenoid, the measurements were 1.7°±4.9° on the 2D CT images and -1.8°±4.1° in the 3D reconstructed image. At the level of the center of the lower circle, the measurements were 2.7°±5.2° on the 2D CT images and -0.5°±4.8° in the 3D reconstructed image. A statistically significant difference was found between the 2D CT and 3D reconstructed images at all three levels. Conclusions: The glenoid version is measured differently between axial 2D CT and 3D reconstructed images at three levels. Use of 3D reconstructed imaging can provide a more accurate glenoid version profile relative to 2D CT. The glenoid version is measured differently at different levels.

Image Quality Improvement in Computed Tomography by Using Anisotropic 2-Dimensional Diffusion Based Filter (비등방성 2차원 확산 기반 필터를 이용한 전산화단층영상 품질 개선)

  • Seoung, Youl-Hun
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.1
    • /
    • pp.45-51
    • /
    • 2016
  • The purpose of this study was tried to remove the noise and improve the spatial resolution in the computed tomography (CT) by using anisotropic 2-dimensional (2D) diffusion based filter. We used 4-channel multi-detector CT and american association of physicists in medicine (AAPM) phantom was used for CT performance evaluation to evaluate the image quality. X-ray irradiation conditions for image acquisition was fixed at 120 kVp, 100 mAs and scanned 10 mm axis with ultra-high resolution. The improvement of anisotropic 2D diffusion filtering that we suggested firstly, increase the contrast of the image by using histogram stretching to the original image for 0.4%, and multiplying the individual pixels by 1.2 weight value, and applying the anisotropic diffusion filtering. As a result, we could distinguished five holes until 0.75 mm in the original image but, five holes until 0.40 mm in the image with improved anisotropic diffusion filter. The noise of the original image was 46.0, the noise of the image with improved anisotropic 2D diffusion filter was decreased to 33.5(27.2%). In conclusion improved anisotropic 2D diffusion filter that we proposed could remove the noise of the CT image and improve the spatial resolution.

Gross tumor volume dependency on phase sorting methods of four-dimensional computed tomography images for lung cancer

  • Lee, Soo Yong;Lim, Sangwook;Ma, Sun Young;Yu, Jesang
    • Radiation Oncology Journal
    • /
    • v.35 no.3
    • /
    • pp.274-280
    • /
    • 2017
  • Purpose: To see the gross tumor volume (GTV) dependency according to the phase selection and reconstruction methods, we measured and analyzed the changes of tumor volume and motion at each phase in 20 cases with lung cancer patients who underwent image-guided radiotherapy. Materials and Methods: We retrospectively analyzed four-dimensional computed tomography (4D-CT) images in 20 cases of 19 patients who underwent image-guided radiotherapy. The 4D-CT images were reconstructed by the maximum intensity projection (MIP) and the minimum intensity projection (Min-IP) method after sorting phase as 40%-60%, 30%-70%, and 0%-90%. We analyzed the relationship between the range of motion and the change of GTV according to the reconstruction method. Results: The motion ranges of GTVs are statistically significant only for the tumor motion in craniocaudal direction. The discrepancies of GTV volume and motion between MIP and Min-IP increased rapidly as the wider ranges of duty cycles are selected. Conclusion: As narrow as possible duty cycle such as 40%-60% and MIP reconstruction was suitable for lung cancer if the respiration was stable. Selecting the reconstruction methods and duty cycle is important for small size and for large motion range tumors.

Efficient approach for determining four-dimensional computed tomography-based internal target volume in stereotactic radiotherapy of lung cancer

  • Yeo, Seung-Gu;Kim, Eun Seog
    • Radiation Oncology Journal
    • /
    • v.31 no.4
    • /
    • pp.247-251
    • /
    • 2013
  • Purpose: This study aimed to investigate efficient approaches for determining internal target volume (ITV) from four-dimensional computed tomography (4D CT) images used in stereotactic body radiotherapy (SBRT) for patients with early-stage non-small cell lung cancer (NSCLC). Materials and Methods: 4D CT images were analyzed for 15 patients who received SBRT for stage I NSCLC. Three different ITVs were determined as follows: combining clinical target volume (CTV) from all 10 respiratory phases ($ITV_{10Phases}$); combining CTV from four respiratory phases, including two extreme phases (0% and 50%) plus two intermediate phases (20% and 70%) ($ITV_{4Phases}$); and combining CTV from two extreme phases ($ITV_{2Phases}$). The matching index (MI) of $ITV_{4Phases}$ and $ITV_{2Phases}$ was defined as the ratio of $ITV_{4Phases}$ and $ITV_{2Phases}$, respectively, to the $ITV_{10Phases}$. The tumor motion index (TMI) was defined as the ratio of $ITV_{10Phases}$ to $CTV_{mean}$, which was the mean of 10 CTVs delineated on 10 respiratory phases. Results: The ITVs were significantly different in the order of $ITV_{10Phases}$, $ITV_{4Phases}$, and $ITV_{2Phases}$ (all p < 0.05). The MI of $ITV_{4Phases}$ was significantly higher than that of $ITV_{2Phases}$ (p < 0.001). The MI of $ITV_{4Phases}$ was inversely related to TMI (r = -0.569, p = 0.034). In a subgroup with low TMI (n = 7), $ITV_{4Phases}$ was not statistically different from $ITV_{10Phases}$ (p = 0.192) and its MI was significantly higher than that of $ITV_{2Phases}$ (p = 0.016). Conclusion: The $ITV_{4Phases}$ may be an efficient approach alternative to optimal $ITV_{10Phases}$ in SBRT for early-stage NSCLC with less tumor motion.

Hydrocephalus: Ventricular Volume Quantification Using Three-Dimensional Brain CT Data and Semiautomatic Three-Dimensional Threshold-Based Segmentation Approach

  • Hyun Woo Goo
    • Korean Journal of Radiology
    • /
    • v.22 no.3
    • /
    • pp.435-441
    • /
    • 2021
  • Objective: To evaluate the usefulness of the ventricular volume percentage quantified using three-dimensional (3D) brain computed tomography (CT) data for interpreting serial changes in hydrocephalus. Materials and Methods: Intracranial and ventricular volumes were quantified using the semiautomatic 3D threshold-based segmentation approach for 113 brain CT examinations (age at brain CT examination ≤ 18 years) in 38 patients with hydrocephalus. Changes in ventricular volume percentage were calculated using 75 serial brain CT pairs (time interval 173.6 ± 234.9 days) and compared with the conventional assessment of changes in hydrocephalus (increased, unchanged, or decreased). A cut-off value for the diagnosis of no change in hydrocephalus was calculated using receiver operating characteristic curve analysis. The reproducibility of the volumetric measurements was assessed using the intraclass correlation coefficient on a subset of 20 brain CT examinations. Results: Mean intracranial volume, ventricular volume, and ventricular volume percentage were 1284.6 ± 297.1 cm3, 249.0 ± 150.8 cm3, and 19.9 ± 12.8%, respectively. The volumetric measurements were highly reproducible (intraclass correlation coefficient = 1.0). Serial changes (0.8 ± 0.6%) in ventricular volume percentage in the unchanged group (n = 28) were significantly smaller than those in the increased and decreased groups (6.8 ± 4.3% and 5.6 ± 4.2%, respectively; p = 0.001 and p < 0.001, respectively; n = 11 and n = 36, respectively). The ventricular volume percentage was an excellent parameter for evaluating the degree of hydrocephalus (area under the receiver operating characteristic curve = 0.975; 95% confidence interval, 0.948-1.000; p < 0.001). With a cut-off value of 2.4%, the diagnosis of unchanged hydrocephalus could be made with 83.0% sensitivity and 100.0% specificity. Conclusion: The ventricular volume percentage quantified using 3D brain CT data is useful for interpreting serial changes in hydrocephalus.

Moderate hypofractionated image-guided thoracic radiotherapy for locally advanced node-positive non-small cell lung cancer patients with very limited lung function: a case report

  • Manapov, Farkhad;Roengvoraphoj, Olarn;Li, Minglun;Eze, Chukwuka
    • Radiation Oncology Journal
    • /
    • v.35 no.2
    • /
    • pp.180-184
    • /
    • 2017
  • Patients with locally advanced lung cancer and very limited pulmonary function (forced expiratory volume in 1 second $[FEV1]{\leq}1L$) have dismal prognosis and undergo palliative treatment or best supportive care. We describe two cases of locally advanced node-positive non-small cell lung cancer (NSCLC) patients with very limited lung function treated with induction chemotherapy and moderate hypofractionated image-guided radiotherapy (Hypo-IGRT). Hypo-IGRT was delivered to a total dose of 45 Gy to the primary tumor and involved lymph nodes. Planning was based on positron emission tomography-computed tomography (PET/CT) and four-dimensional computed tomography (4D-CT). Internal target volume (ITV) was defined as the overlap of gross tumor volume delineated on 10 phases of 4D-CT. ITV to planning target volume margin was 5 mm in all directions. Both patients showed good clinical and radiological response. No relevant toxicity was documented. Hypo-IGRT is feasible treatment option in locally advanced node-positive NSCLC patients with very limited lung function ($FEV1{\leq}1L$).