• Title/Summary/Keyword: 4-benzoquinone

Search Result 79, Processing Time 0.02 seconds

The Antioxidant and Antimicrobial Activities of Extracts of Selected Barley and Wheat Inhabited in Korean Peninsula (국내산 보리와 밀 추출물의 항산화 및 항균 활성)

  • Jo, Sung-Hoon;Cho, Cha-Young;Ha, Kyoung-Soo;Choi, Eun-Ji;Kang, Yu-Ri;Kwon, Young-In
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.7
    • /
    • pp.1003-1007
    • /
    • 2013
  • In this study, the antibacterial activities of selected barleys (UB, unhulled barley; PB, pearl barley; and NB, naked barley) and wheat (WG, wheat with germ and endosperm) extracts were evaluated against the food-borne pathogens Staphylococcus aureus KCTC 1927, Escherichia coli KCTC 2593, Salmonella Typhimurium KCTC 2054, and Bacillus cereus KCTC 1014. The amount of the antibacterial biomarker, 2,6-dimethoxy-1,4-benzoquinone (DMBQ), present in selected barleys and wheat, was measured by HPLC. Furthermore, antioxidant activity of samples was determined using the oxygen radical absorbance capacity (ORAC) assay. WG ($22.35{\pm}0.04mm$) was found to be highly inhibitory to Staphylococcus aureus followed by UB ($17.91{\pm}0.10mm$), PB ($16.87{\pm}0.05mm$), and NB ($15.69{\pm}0.20mm$). The antibacterial activity of the selected grains was correlated with antioxidant activities and the amount of DMBQ (Pearson's correlation coefficient, 0.7831). The antioxidant activity of the selected grains was also correlated with the total phenolic content (Pearson's correlation coefficient, 0.9934). WG extract showed significantly higher antibacterial activity, compared with barley extracts such as UB, PB, and NB. The results of this study suggest that barley has a potential in the development of natural antimicrobials and food preservatives for controlling food-borne pathogens.

Analysis of Genes Regulated by HSP90 Inhibitor Geldanamycin in Neurons

  • Yang, Young-Mo;Kim, Seung-Whan;Kwon, O-Yu
    • Biomedical Science Letters
    • /
    • v.15 no.1
    • /
    • pp.97-99
    • /
    • 2009
  • Geldanamycin is a benzoquinone ansamycin antibiotic that binds to cytosol HSP90 (Heat Shock Protein 90) and changes its biological function. HSP90 is involved in the intracellular important roles for the regulation of the cell cycle, cell growth, cell survival, apoptosis, angiogenesis and oncogenesis. To identify genes expressed during geldanamycin treatment against neurons of rats (PC12 cells), DNA microarray method was used. We have isolated 2 gene groups (up-or down-regulated genes) which are geldanamycin differentially expressed in neurons. Granzyme B is the gene most significantly increased among 204 up-regulated genes (more than 2 fold over-expression) and Chemokine (C-C motif) ligand 20 is the gene most dramatically decreased among 491 down-regulated genes (more than 2 fold down-expression). The gene increased expression of Cxc110, Cyp11a1, Gadd45a, Gja1, Gpx2, Ifua4, Inpp5e, Sox4, and Stip1 are involved stress-response gene, and Cryab, Dnaja1, Hspa1a, Hspa8, Hspca, Hspcb, Hspd1, Hspd1, and Hsph1 are strongly associated with protein folding. Cell cycle associated genes (Bc13, Brca2, Ccnf, Cdk2, Ddit3, Dusp6, E2f1, Illa, and Junb) and inflammatory response associated genes (Cc12, Cc120, Cxc12, Il23a, Nos2, Nppb, Tgfb1, Tlr2, and Tnt) are down-regulated more than 2 times by geldanamycin treatment. We found that geldanamycin is related to expression of many genes associated with stress response, protein folding, cell cycle, and inflammation by DNA microarray analysis. Further experimental molecular studies will be needed to figure out the exact biological function of various genes described above and the physiological change of neuronal cells by geldanamycin. The resulting data will give the one of the good clues for understanding of geldanamycin under molecular level in the neurons.

  • PDF

Reaction of Bis(diethylamino)aluminum Hydride in Tetrahydrofuran with Selected Organic Compounds Containing Representative Functional Groups

  • Jin Soon Cha;Oh Oun Kwon;Jong Mi Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.2
    • /
    • pp.132-138
    • /
    • 1994
  • Bis(diethylamino)aluminum hydride was utilized in a systematic study of the approximate rates and stoichiometry of the reaction of excess reagent with 55 selected organic compounds containing representative functional groups under standardized conditions (THF, $0^{\circ}C$, reagent to compound=4 : 1) in order to define the characteristics of the reagent for selective reductions. The reducing action of BEAH was also compared with that of the parent aluminum hydride. The reducing action of the reagent is quite similar to that of aluminum hydride, but the reducing power is much weaker. Aldehydes and ketones were readily reduced in 1-3 h to the corresponding alcohols. However, unexpectedly, a ready involvement of the double bond in cinnamaldehyde was realized to afford hydrocinnamyl alcohol. The introduction of diethylamino group to the parent aluminum hydride appears not to be appreciably influential in stereoselectivity on the reduction of cyclic ketones. Both p-benzoquinone and anthraquinone utilized 2 equiv of hydride readily without evolution of hydrogen, proceeded cleanly to the 1,4-reduction products. Carboxylic acids and acid chlorides underwent reduction to alcohols slowly, whereas cyclic anhydrides utilized only 2 equiv of hydride slowly to the corresponding hydroxylacids. Especially, benzoic acid with a limiting amount of hydride was reduced to benzaldehyde in a yield of 80%. Esters and lactones were also readily reduced to alcohols. Epoxides examined all reacted slowly to give the ring-opened products. Primary and tertiary amides utilized 1 equiv of hydride fast and further hydride utilization was quite slow. The examination for possibility of achieving a partial reduction to aldehydes was also performed. Among them, benzamide and N,N-dimethylbenzamide gave ca, 90% yields of benzaldehyde. Both the nitriles examined were also slowly reduced to the amines. Unexpectedly, both aliphatic and aromatic nitro compounds proved to be relatively reactive to the reagent. On the other hand, azo- and azoxybenzenes were quite inert to BEAH. Cyclohexanone oxime liberated 1 equiv of hydrogen and utilized 1 equiv of hydride for reduction, corresponding to N-hydroxycyclohexylamine. Pyridine ring compounds were also slowly attacked. Disulfides were readily reduced with hydrogen evolution to the thiols, and dimethyl sulfoxide and diphenyl sulfone were also rapidly reduced to the sulfides.

Reducing Characteristics of Potassium Tri-sec-butylborohydride

  • Yoon, Nung-Min;Hwang, Young-Soo;Yang, Ho-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.4
    • /
    • pp.382-388
    • /
    • 1989
  • The approximate rates and stoichiometry of the reaction of excess potassium tri-sec-butylborohydride ($K_s-Bu_3BH$) with selected organic compounds containing representative functional groups were determined under the standard conditions (0$^{\circ}C$, THF) in order to define the characteristics of the reagent for selective reductions. Primary alcohols evolve hydrogen in 1 h, but secondary and tertiary alcohols and amines are inert to this reagent. On the other hand, phenols and thiols evolve hydrogen rapidly. Aldehydes and ketones are reduced rapidly and quantitatively to the corresponding alcohols. Reduction of norcamphor gives 99.3% endo- and 0.7% exo-isomer of norboneols. The reagent rapidly reduces cinnamaldehyde to the cinamyl alcohol stage and shows no further uptake of hydride. p-Benzoquinone takes up one hydride rapidly with 0.32 equiv hydrogen evolution and anthraquinone is cleanly reduced to the 9,10-dihydoxyanthracene stage. Carboxylic acids liberate hydrogen rapidly and quantitatively, however further reduction does not occur. Anhydrides utilize 2 equiv of hydride and acyl chlorides are reduced to the corresponding alcohols rapidly. Lactones are reduced to the diol stage rapidly, whereas esters are reduced moderately (3-6 h). Terminal epoxides are rapidly reduced to the more substituted alcohols, but internal epoxides are reduced slowly. Primary and tertiary amides are inert to this reagent and nitriles are reduced very slowly. 1-Nitropropane evolves hydrogen rapidly without reduction and nitrobenzene is reduced to the azoxybenzene stage, whereas azobenzene and azoxybenzene are inert. Cyclohexanone oxime evolves hydrogen without reduction. Phenyl isocyanate utilizes 1 equiv of hydride to proceed to formanilide stage. Pyridine and quinoline are reduced slowly, however pyridine N-oxide takes up 1.5 equiv of hydride in 1 hr. Disulfides are rapidly reduced to the thiol stage, whereas sulfide, sulfoxide, sulfonic acid and sulfone are practically inert to this reagent. Primary alkyl bromide and iodide are reduced rapidly, but primary alkyl chloride, cyclohexyl bromide and cyclohexyl tosylate are reduced slowly.

Reaction of Lithium Tris(diethylamino)aluminum Hydride in Tetrahydrofuran with Selected Organic Compounds Containing Representative Functional Groups

  • Jin Soon Cha;Jae Cheol Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.4
    • /
    • pp.469-475
    • /
    • 1993
  • The approximate rates and stoichiometry of the reaction of excess lithium tris(diethylamino)aluminum hydride (LTDEA) with selected organic compounds containing representative functional groups under standardized condition (tetrahydrofuran, 0$^{\circ}C$) were examined in order to define the characteristics of the reagent for selective reductions. The reducing ability of LTDEA was also compared with those of the parent lithium aluminum hydride (LAH) and lithium tris(dibutylamino)aluminum hydride (LTDBA). In general, the reactivity toward organic functionalities is in order of LAH${\gg}$LTDEA${\geq}$LTDBA. LTDEA shows a unique reducing characteristics. Thus, benzyl alcohol and phenol evolve hydrogen slowly. The rate of hydrogen evolution of primary, secondary, and tertiary alcohols is distinctive: 1-hexanol evolves hydrogen completely in 6 h, whereas 3-hexanol evolves hydrogen very slowly. However, 3-ethyl-3-pentanol does not evolve any hydrogen under these reaction conditions. Primary amine, such as n-hexylamine, evolves only 1 equivalent of hydrogen. On the other hand, thiols examined are absolutely inert to this reagent. LTDEA reduces aldehydes, ketones, esters, acid chlorides, and epoxides readily to the corresponding alcohols. Quinones, such as p-benzoquinone and anthraquinone, are reduced to the corresponding diols without hydrogen evolution. However, carboxylic acids, anhydrides, nitriles, and primary amides are reduced slowly, where as tertiary amides are readily reduced. Finally, sulfides and sulfoxides are reduced to thiols and sulfides, respectively, without evolution of hydrogen. In addition to that, the reagent appears to be an excellent partial reducing agent to convert esters, primary carboxamides, and aromatic nitriles into the corresponding aldehydes. Free carboxylic acids are also converted into aldehydes through treatment of acyloxy-9-BBN with this reagent in excellent yields.

Reaction of Potassium 2-Thexyl-1,3,2-dioxaborinane Hydride with Selected Organic Compounds Containing Representative Functional Groups

  • Jin Soon Cha;Sung Eun Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.5
    • /
    • pp.531-537
    • /
    • 1992
  • The approximate rates and stoichiometry of the reaction of excess potassium 2-thexyl-1,3,2-dioxaborinane hydride(KTDBNH) with 55 selected compounds containing representative functional groups under standardized conditions (tetrahydrofuran, TEX>$0^{\circ}C$, reagent : compound=4 : 1) was examined in order to define the characteristics of the reagent for selective reductions. Benzyl alcohol and phenol evolve hydrogen immediately. However, primary, secondary and tertiary alcohols evolve hydrogen slowly, and the rate of hydrogen evolution is in order of $1^{\circ}$> $2^{\circ}$> $3^{\circ}$. n-Hexylamine is inert toward the reagent, whereas the thiols examined evolve hydrogen rapidly. Aldehydes and ketones are reduced rapidly and quantitatively to give the corresponding alcohols. Cinnamaldehyde is rapidly reduced to cinnamyl alcohol, and further reduction is slow under these conditions. The reaction with p-benzoquinone dose not show a clean reduction, but anthraquinone is cleanly reduced to 9,10-dihydro-9,10-anthracenediol. Carboxylic acids liberate hydrogen immediately, further reduction is very slow. Cyclic anhydrides slowly consume 2 equiv of hydride, corresponding to reduction to the caboxylic acid and alcohol stages. Acid chlorides, esters, and lactones are rapidly and quantitatively reduced to the corresponding carbinols. Epoxides consume 1 equiv hydride slowly. Primary amides evolve 1 equiv of hydrogen readily, but further reduction is slow. Tertiary amides are also reduced slowly. Both aliphatic and aromatic nitriles consume 1 equiv of hydride rapidly, but further hydride uptake is slow. Analysis of the reaction mixture with 2,4-dinitrophenylhydrazine yields 64% of caproaldehyde and 87% of benzaldehyde, respectively. 1-Nitropropane utilizes 2 equiv of hydride, one for hydrogen evolution and the other for reduction. Other nitrogen compounds examined are also reduced slowly. Cyclohexanone oxime undergoes slow reduction to N-cyclohexylhydroxyamine. Pyridine ring is slowly attacked. Disulfides examined are reduced readily to the correponding thiols with rapid evolution of 1 equiv hydrogen. Dimethyl sulfoxide is reduced slowly to dimethyl sulfide, whereas the reduction of diphenyl sulfone is very slow. Sulfonic acids only liberate hydrogen quantitatively without any reduction. Finally, cyclohexyl tosylate is inert to this reagent. Consequently, potassium 2-thexyl-1,3,2-dioxaborinane hydride, a monoalkyldialkoxyborohydride, shows a unique reducing characteristics. The reducing power of this reagent exists somewhere between trialkylborohydrides and trialkoxyborohydride. Therefore, the reagent should find a useful application in organic synthesis, especially in the field of selective reduction.

Reaction of Sodium Tris(diethylamino)aluminum Hydride with Selected Organic Compounds Containing Representative Functional Groups

  • Cha, Jin-Soon;Jeoung, Min-Kyoo;Kim, Jong-Mi;Kwon, Oh-Oun;Lee, Keung-Dong;Kim, Eun-Ju
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.10
    • /
    • pp.881-888
    • /
    • 1994
  • The approximate rates and stoichiometry of the reaction of excess sodium tris(diethylamino)aluminum hydride (ST-DEA) with selected organic compounds containing representative functional groups under standardized conditions(tetrahydrofuran, $0{\circ}$) were studied in order to characterize the reducing characteristics of the reagent for selective reductions. The reducing ability of STDEA was also compared with those of the parent sodium aluminum hydride (SAH) and lithium tris(diethylamino)aluminum hydride (LTDEA). The reagent appears to be milder than LTDEA. Nevertheless, the reducing action of STDEA is very similar to that observed previously for LTDEA, as is the case of the corresponding parent sodium and lithium aluminum hydrides. STDEA shows a unique reducing characteristics. Thus, benzyl alcohol, phenol and 1-hexanol evolved hydrogen slowly, whereas 3-hexanol and 3-ethyl-3-pentanol, secondary and tertiary alcohols, were essentially inert to STDEA. Primary amine, such as n-hexylamine, evolved only 1 equivalent of hydrogen slowly. On the other hand, thiols examined were absolutely stable. STDEA reduced aidehydes and ketones rapidly to the corresponding alcohols. The stereoselectivity in the reduction of cyclic ketones by STDEA was similar to that by LTDEA. Quinones, such as p-benzoquinone and anthraquinone, were reduced to the corresponding 1,4-dihydroxycyclohexadienes without evolution of hydrogen. Carboxylic acids and anhydrides were reduced very slowly, whereas acid chlorides were reduced to the corresponding alcohols readily. Esters and epoxides were also reduced readily. Primary carboxamides consumed hydrides for reduction slowly with concurrent hydrogen evolution, but tertiary amides were readily reduced to the corresponding tertiary amines. The rate of reduction of aromatic nitriles was much faster than that of aliphatic nitriles. Nitrogen compounds examined were also reduced slowly. Finally, disulfide, sulfoxide, sulfone, and cyclohexyl tosylate were readily reduced without evolution of hydrogen. In addition to that, the reagent appears to be an excellent partial reducing agent: like LTDEA, STDEA converted ester and primary carboxamides to the corresponding aldehydes in good yields. Furthermore, the reagent reduced aromatic nitriles to the corresponding aldehydes chemoselectively in the presence of aliphatic nitriles. Consequently, STDEA can replace LTDEA effectively, with a higher selectivity, in most organic reductions.

Transcriptome Analysis of Antrodia cinnamomea Mycelia from Different Wood Substrates

  • Jiao-Jiao Chen;Zhang Zhang;Yi Wang;Xiao-Long Yuan;Juan Wang;Yu-Ming Yang;Yuan Zheng
    • Mycobiology
    • /
    • v.51 no.1
    • /
    • pp.49-59
    • /
    • 2023
  • Antrodia cinnamomea, an edible and medicinal fungus with significant economic value and application prospects, is rich in terpenoids, benzenoids, lignans, polysaccharides, and benzoquinone, succinic and maleic derivatives. In this study, the transcriptome of A. cinnamomea cultured on the wood substrates of Cinnamomum glanduliferum (YZM), C. camphora (XZM), and C. kanehirae (NZM) was sequenced using the high-throughput sequencing technology Illumina HiSeq 2000, and the data were assembled by de novo strategy to obtain 78,729 Unigenes with an N50 of 4,463 bp. Compared with public databases, about 11,435, 6,947, and 5,994 Unigenes were annotated to the Non-Redundant (NR), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genome (KEGG), respectively. The comprehensive analysis of the mycelium terpene biosynthesis-related genes in A. cinnamomea revealed that the expression of acetyl-CoA acetyltransferase (AACT), acyl-CoA dehydrogenase (MCAD), 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA), mevalonate pyrophosphate decarboxylase (MVD), and isopentenyl diphosphate isomerase (IDI) was significantly higher on NZM compared to the other two wood substrates. Similarly, the expression of geranylgeranyltransferase (GGT) was significantly higher on YZM compared to NZM and XZM, and the expression of farnesyl transferase (FTase) was significantly higher on XZM. Furthermore, the expressions of 2,3-oxidized squalene cyclase (OCS), squalene synthase (SQS), and squalene epoxidase (SE) were significantly higher on NZM. Overall, this study provides a potential approach to explore the molecular regulation mechanism of terpenoid biosynthesis in A. cinnamomea.

Treatment of decomposition of Aqueous 2,4-Dichlorophenol Solution by Ultrasonic Irradiation (초음파 검사에 의한 수중의 2,4-Dichlorophenol 분해처리)

  • 손종렬;문경환;김영환;우완기
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.3
    • /
    • pp.54-62
    • /
    • 1999
  • 2,4-Dichlorophenol was known pollutants caused by the endocrine disruptor into the refractory substances of environment and this is difficult to be degradable by conventional methods. Therefore, a considerable interest has been devoted to developing new process where 2,4-Dichlorophenol can easily decomposed. In this study, the series of ultrasonic irradiation for removal of 2,4-Dichlorophenol has been selected as a model reaction in the batch reactor system in order to obtain the basic data investigate the influence of various experimental parameters such as concentration, pH, reaction temperature, acoustic intensity. The products obtained form the ultrasonic irradiation were analysed by GC/MS and HPLC. The formation of $H_2O_2$, a well-known the strong oxidant was found proportionally to increase with irradiation time. The intermediates of ultrasonic irradiation of 2,4-Dichlorophenol were identified as HCl, catechol, hydroquinone, o,p-benzoquinone, muconic acid, and maleic acid. The final products of this was $CO_2$ and $H_2O$. As the decomposition of 2,4-Dichlorophenol proceeds by the ultrasonic irradiation, the pH of 2,4-Dichlorophenol containing aqueous solution increases slowly, The decomposition of 2,4-Dichlorophenol was found to be occured fast in the basic medium. In general, the rate of reaction is proportional to the reaction temperature obeying the Arrhenius' law. However, in the ultrasonic irradiation, this suggests as the reaction temperature increase the decomposition rate of the reactant decreases. This result meant that the increase of reaction temperature due to the increase of vapor pressure of water accelerated the decrease of acoustic intensity which was can be proportional to the decomposition rae of these compounds. It was found that more than 80% of phenol solution was removed within hours in all reaction conditions. The reaction order in the degradation of the 2,4-Dichlorophenol compounds was verified as the Pseude-first order. From the fore-mentioned results, it can be concluded that the refractory organic compounds caused by endocrine disruptor as 2,4-dichlorophenol could be removed by the ultrasonic irradiation with radicals, such as $H{\;}{\cdot}{\;}and{\;}OH{\;}{\cdot}$ radical causing the high increase of pressure and temperature. Finally, it apeared that the technology using ultrasonic irradiation can be applied to the treatment of refractory substances caused by endocrine disruptor which are difficult to be decomposed by the conventional methods.

  • PDF