• 제목/요약/키워드: 4-Nitrosoaniline

검색결과 22건 처리시간 0.017초

실험계획법을 이용한 가스 혼합-순환식 플라즈마 공정의 최적화 (Optimization of Gas Mixing-circulation Plasma Process using Design of Experiments)

  • 김동석;박영식
    • 한국환경과학회지
    • /
    • 제23권3호
    • /
    • pp.359-368
    • /
    • 2014
  • The aim of our research was to apply experimental design methodology in the optimization of N, N-Dimethyl-4-nitrosoaniline (RNO, which is indictor of OH radical formation) degradation using gas mixing-circulation plasma process. The reaction was mathematically described as a function of four independent variables [voltage ($X_1$), gas flow rate ($X_2$), liquid flow rate ($X_3$) and time ($X_4$)] being modeled by the use of the central composite design (CCD). RNO removal efficiency was evaluated using a second-order polynomial multiple regression model. Analysis of variance (ANOVA) showed a high coefficient of determination ($R^2$) value of 0.9111, thus ensuring a satisfactory adjustment of the second-order polynomial multiple regression model with the experimental data. The application of response surface methodology (RSM) yielded the following regression equation, which is an empirical relationship between the RNO removal efficiency and independent variables in a coded unit: RNO removal efficiency (%) = $77.71+10.04X_1+10.72X_2+1.78X_3+17.66X_4+5.91X_1X_2+3.64X_2X_3-8.72X_2X_4-7.80X{_1}^2-6.49X{_2}^2-5.67X{_4}^2$. Maximum RNO removal efficiency was predicted and experimentally validated. The optimum voltage, air flow rate, liquid flow rate and time were obtained for the highest desirability at 117.99 V, 4.88 L/min, 6.27 L/min and 24.65 min, respectively. Under optimal value of process parameters, high removal(> 97 %) was obtained for RNO.

Boron-doped Diamond 전극을 이용한 Rhodamine B와 N, N-Dimethyl-4-nitrosoanilin의 전기화학적 분해에 반응표면분석법의 적용과 공정 최적화 (Application of the Response Surface Methodology and Process Optimization to the Electrochemical Degradation of Rhodamine B and N, N-Dimethyl-4-nitrosoanilin Using a Boron-doped Diamond Electrode)

  • 김동석;박영식
    • 한국환경보건학회지
    • /
    • 제36권4호
    • /
    • pp.313-322
    • /
    • 2010
  • The aim of this research was to apply experimental design methodology to optimization of conditions of electrochemical oxidation of Rhodamine B (RhB) and N, N-Dimethyl-4-nitrosoaniline (RNO, indicative of the OH radical). The reactions of electrochemical oxidation of RhB degradation were mathematically described as a function of the parameters of current ($X_1$), NaCl dosage ($X_2$) and pH ($X_3$) and modeled by the use of the central composite design. The application of response surface methodology (RSM) yielded the following regression equation, which is an empirical relationship between the removal efficiency of RhB and RNO and test variables in a coded unit: RhB removal efficiency (%) = $94.21+7.02X_1+10.94X_2-16.06X_3+3.70X_1X_3+9.05X_2X_3-{3.46X_1}^2-{4.67X_2}^2-{7.09X_3}^2$; RNO removal efficiency (%) = $54.78+13.33X_1+14.93X_2- 16.90X_3$. The model predictions agreed well with the experimentally observed result. Graphical response surface and contour plots were used to locate the optimum point. The estimated ridge of maximum response and optimal conditions for the RhB degradation using canonical analysis was 100.0%(current, 0.80 A; NaCl dosage, 2.97% and pH 6.37).

기-액 혼합 플라즈마 방전 시스템에서 화학적 활성종의 생성 (Study on the Generation of Chemically Active Species Using Gas-liquid Mixing Plasma Discharging System)

  • 김동석;박영식
    • 한국물환경학회지
    • /
    • 제30권4호
    • /
    • pp.394-402
    • /
    • 2014
  • High-voltage dielectric discharges are an emerging technique in environmental pollutant degradation, which are characterized by the production of hydroxyl radicals as the primary degradation species. The initiation and propagation of the electrical discharges depends on several physical, chemical, and electrical parameters such as 1st and 2nd voltage of power, gas supply, conductivity and pH. These parameters also influence the physical and chemical characteristics of the discharges, including the production of reactive species such as OH, $H_2O_2$ and $O_3$. The experimental results showed that the optimum 1st voltage and oxygen flow rate for RNO (N-Dimethyl-4-nitrosoaniline, indicator of the generation of OH radical) degradation were 160 V (2nd voltage of is 15 kV) and 4 L/min, respectively. As the 2nd voltage (4 kV to 15 kV) was increase, RNO degradation was increased and, generated $H_2O_2$ and $O_3$ concentration were increased. The conductivity of the solution was not influencing the RNO degradation, $H_2O_2$ and $O_3$ generation. The pH effect on RNO degradation was not high. However, the lower pH and the conductivity, the higher $H_2O_2$ and $O_3$ generation were observed.

중심합성설계와 반응표면분석법을 이용한 수처리용 산소-플라즈마와 공기-플라즈마 공정의 최적화 (Optimization of Air-plasma and Oxygen-plasma Process for Water Treatment Using Central Composite Design and Response Surface Methodology)

  • 김동석;박영식
    • 한국환경과학회지
    • /
    • 제20권7호
    • /
    • pp.907-917
    • /
    • 2011
  • This study investigated the application of experimental design methodology to optimization of conditions of air-plasma and oxygen-plasma oxidation of N, N-Dimethyl-4-nitrosoaniline (RNO). The reactions of RNO degradation were described as a function of the parameters of voltage ($X_1$), gas flow rate ($X_2$) and initial RNO concentration ($X_3$) and modeled by the use of the central composite design. In pre-test, RNO degradation of the oxygen-plasma was higher than that of the air-plasma though low voltage and gas flow rate. The application of response surface methodology (RSM) yielded the following regression equation, which is an empirical relationship between the RNO removal efficiency and test variables in a coded unit: RNO removal efficiency (%) = $86.06\;+\;5.00X_1\;+\;14.19X_2\;-\;8.08X_3\;+\;3.63X_1X_2\;-\;7.66X_2^2$ (air-plasma); RNO removal efficiency (%) = $88.06\;+\;4.18X_1\;+\;2.25X_2\;-\;4.91X_3\;+\;2.35X_1X_3\;+\;2.66X_1^2\;+\;1.72X_3^2$ (oxygen-plasma). In analysis of the main effect, air flow rate and initial RNO concentration were most important factor on RNO degradation in air-plasma and oxygen-plasma, respectively. Optimized conditions under specified range were obtained for the highest desirability at voltage 152.37 V, 135.49 V voltage and 5.79 L/min, 2.82 L/min gas flow rate and 25.65 mg/L, 34.94 mg/L initial RNO concentration for air-plasma and oxygen-plasma, respectively.

BDD 전극을 이용한 OH 라디칼 생성과 염료 분해에 미치는 운전인자의 영향 (Effects of Operating Parameters on Electrochemical Degradation of Rhodamine B and Formation of OH Radical Using BDD Electrode)

  • 박영식;김동석
    • 한국환경과학회지
    • /
    • 제19권9호
    • /
    • pp.1143-1152
    • /
    • 2010
  • The purpose of this study is to degradation of Rhodamine B (RhB, dye) and N, N-Dimethyl-4-nitrosoaniline (RNO, indicator of the electro-generation of OH radical) in solution using boron doped diamond (BDD) electrode. The effects of applied current (0.2~1.0 A), electrolyte type (NaCl, KCl, and $Na_2SO_4$) and electrolyte concentration (0.5~3.0 g/L), solution pH (3~11) and air flow rate (0~4 L/min) were evaluated. Experimental results showed that RhB and RNO removal tendencies appeared with the almost similar thing, except of current. Optimum current for RhB degradation was 0.6 A, however, RNO degradations was increased with increase of applied current. The RhB and RNO degradation of Cl type electrolyte were higher than that of the sulfate type. The RhB and RNO degradation were increased with increase of NaCl concentration and optimum NaCl dosage was 2.5 g/L. The RhB and RNO concentrations were not influenced by pH under pH 7. Optimum air flow rate for the oxidants generation and RhB and RNO degradation were 2 L/min. Initial removal rate of electrolysis process was expressed Langmuir - Hinshelwood equation, which is used to express the initial removal rate of UV/$TiO_$2 process.

수처리용 다중 유전체 방벽 방전 플라즈마 반응기 개발 (Development of Multi Dielectric Barrier Discharge Plasma Reactor for Water Treatment)

  • 김동석;박영식
    • 한국환경과학회지
    • /
    • 제22권7호
    • /
    • pp.863-871
    • /
    • 2013
  • Dielectric discharges are an emerging technique in environmental pollutant degradation, which that are characterized by the production of hydroxyl radicals as the primary degradation species. For practical application of the plasma reactor, reactor that can handle large amounts of water are needed. Plasma research to date has focused on small-scale water treatment. This study was carried out basic study for scale-up of a single DBD (dielectric barrier discharge) plasma reactor. The degradation of N, N-Dimethyl-4-nitrosoaniline (RNO, indicator of the generation of OH radical) was used as a performance indicator of multi-plasma reactor. The experiments is divided into two parts: design parameters [effect of distance of single plasma module (1~14 cm), arrangement of ground electrode (single and multi), rector number (1~5) and power number (1~5)]; operation parameter [effect of applied voltage (60~220 V), air flow rate (1~5 L/min), electric conductivity of solution ($1.4{\mu}S/cm$, deionized water)~18.8 mS/cm (addition of NaCl 10 g/L) and pH (5~9)]. Considering the electric stability of the plasma reactor, optimum spacing between the single plasma module was 2 cm. Multi discharge electrodes - single ground electrode array was selected. Combination of power 3-plasma module 5 was the optimal combination for maximum RNO degradation. The optimum 1st voltage and air flow rate for RNO degradation were 180 V and 4 L/min, respectively. The pH and conductivity of the solution was not influencing the RNO degradation.

고급산화공정용 유전체 장벽 플라즈마 반응기의 성능 개선 (Performance Improvement of Dielectric Barrier Plasma Reactor for Advanced Oxidation Process)

  • 김동석;박영식
    • 대한환경공학회지
    • /
    • 제34권7호
    • /
    • pp.459-466
    • /
    • 2012
  • 유전체 장벽 방전(Dielectric Barrier Discharge; DBD) 플라즈마의 처리 성능을 개선시키기 위하여, 플라즈마+ UV 공정과 기-액 혼합기의 적용에 대해 연구하였다. 처리 대상물질로는 표백효과에 의해 육안으로 쉽게 확인이 가능하고 분석이 간편한 OH 라디칼 생성의 간접 지표인 N, N-Dimethyl-4-nitrosoaniline (RNO)이었다. 기본 플라즈마 반응기는 플라즈마 반응기 [석영관 유전체, 티타늄 방전(내부) 전극, 및 접지(외부) 전극], 공기와 전원 공급장치로 구성되어 있다. 플라즈마 반응기의 개선은 기본 플라즈마 반응기에 UV 공정과의 결합, 기-액 혼합기의 적용에 의해 이루어 졌다. 플라즈마+ UV 공정의 UV 전력 변화(0~10 W), 기-액 혼합기의 존재 유무와 형태, 공기 유량(1~6 L/min), 산기관 기공 크기 범위(16~$160{\mu}m$), 액체 순환 유량(2.8~9.4 L/min) 및 개선된 플라즈마+ UV 공정에서 UV 전력의 영향 등이 평가되었다. 실험 결과 플라즈마+ UV 공정은 기본 플라즈마 반응기보다 RNO 처리율이 7.36% 높아진 것으로 나타났다. 기-액 혼합기의 적용이 플라즈마+ UV 공정보다 RNO 처리율이 더 높은 것으로 나타났고, 기-액 혼합법에 따른 RNO 분해는 기-액 혼합기 > 펌프 순환 > 기본 반응기의 순으로 나타났다. 산기관 형 기-액 혼합기에 의한 RNO 처리율 증가는 17.42%로 나타났다. 최적 공기 유량, 산기관 기포 크기 범위 및 순환 유량은 각각 4 L/min, 40~$100{\mu}m$와 6.9 L/min으로 나타났다. 기-액 혼합기 플라즈마+ UV공정의 경합으로 인한 시너지 효과는 미미한 것으로 나타났다.

이류체 노즐을 이용한 유전체장벽방전 플라즈마 가스의 OH 라디칼 생성 향상 (Enhancement of OH Radical Generation of Dielectric Barrier Discharge Plasma Gas Using Air-automizing Nozzle)

  • 박영식
    • 한국환경과학회지
    • /
    • 제27권8호
    • /
    • pp.621-629
    • /
    • 2018
  • Many chemically active species such as ${\cdot}H$, ${\cdot}OH$, $O_3$, $H_2O_2$, hydrated $e^-$, as well as ultraviolet rays, are produced by Dielectric Barrier Discharge (DBD) plasma in water and are widely use to remove non-biodegradable materials and deactivate microorganisms. As the plasma gas containing chemically active species that is generated from the plasma reaction has a short lifetime and low solubility in water, increasing the dissolution rate of this gas is an important challenge. To this end, the plasma gas and water within reactor were mixed using the air-automizing nozzle, and then, water-gas mixture was injected into water. The dissolving effect of plasma gas was indirectly confirmed by measuring the RNO (N-Dimethyl-4-nitrosoaniline, indicator of the formation of OH radical) solution. The plasma system consisted of an oxygen generator, a high-voltage power supply, a plasma generator and a liquid-gas mixing reactor. Experiments were conducted to examine the effects of location of air-automizing nozzle, flow rate of plasma gas, water circulation rate, and high-voltage on RNO degradation. The experimental results showed that the RNO removal efficiency of the air-automizing nozzle is 29.8% higher than the conventional diffuser. The nozzle position from water surface was not considered to be a major factor in the design and operation of the plasma reactor. The plasma gas flow rate and water circulation rate with the highest RNO removal rate were 3.5 L/min and 1.5 L/min, respectively. The ratio of the plasma gas flow rate to the water circulation rate for obtaining an RNO removal rate of over 95% was 1.67 ~ 4.00.

수중 플라즈마 공정을 이용한 Rhodamine B 염료의 제거 (Removal of Rhodamine B Dye Using a Water Plasma Process)

  • 김동석;박영식
    • 한국환경보건학회지
    • /
    • 제37권3호
    • /
    • pp.218-225
    • /
    • 2011
  • Objectives: In this paper, a dielectric barrier discharge (DBD) plasma reactor was investigated for degrading the dye Rhodamine B (RhB) in aqueous solutions. Methods: The DBD plasma reactor system in this study consisted of a plasma component [titanium discharge (inner), ground (outer) electrode and quartz dielectric tube], power source, and gas supply. The effects of various parameters such as first voltage (input power), gas flow rate, second voltage (output power), conductivity and pH were investigated. Results: Experimental results showed that a 99% aqueous solution of 20 mg/l Rhodamine B is decolorized following an eleven minute plasma treatment. When comparing the performance of electrolysis and plasma treatment, the RhB degradation of the plasma process was higher that of the electrolysis. The optimum first voltage and air flow rate were 160 V (voltage of trans is 15 kV) and 3 l/min, respectively. With increased second voltage (4 kV to 15 kV), RhB degradation was increased. The higher the pH and the lower conductivity, the more Rhodamine B degradation was observed. Conclusions: OH radical generation of dielectric plasma process was identified by degradation of N, N-dimethyl-4-nitrosoaniline (RNO, indicator of OH radical generation). It was observed that the effect of UV light, which was generated as streamer discharge, on Rhodamine B degradation was not high. Rhodamine B removal was influenced by real second voltage regardless of initial first and second voltage. The effects of pH and conductivity were not high on the Rhodamine B degradation.

산소-플라즈마 공정에서 산화제의 생성에 대한 연구 (A Study for Oxidants Generation on Oxygen-plasma Discharging Process Discharging System)

  • 김동석;박영식
    • 한국환경과학회지
    • /
    • 제22권12호
    • /
    • pp.1561-1569
    • /
    • 2013
  • This study carried out a laboratory scale plasma reactor about the characteristics of chemically oxidative species (${\cdot}OH$, $H_2O_2$ and $O_3$) produced in dielectric barrier discharge plasma. It was studied the influence of various parameters such as gas type, $1^{st}$ voltage, oxygen flow rate, electric conductivity and pH of solution for the generation of the oxidant. $H_2O_2$ and $O_3$.) $H_2O_2$ and $O_3$ was measured by direct assay using absorption spectrophotometry. OH radical was measured indirectly by measuring the degradation of the RNO (N-Dimethyl-4-nitrosoaniline, indicator of the generation of OH radical). The experimental results showed that the effect of influent gases on RNO degradation was ranked in the following order: oxygen > air >> argon. The optimum $1^{st}$ voltage for RNO degradation were 90 V. As the increased of $1^{st}$ voltage, generated $H_2O_2$ and $O_3$ concentration were increased. The intensity of the UV light emitted from oxygen-plasma discharge was lower than that of the sun light. The generated hydrogen peroxide concentration and ozone concentration was not high. Therefore it is suggested that the main mechanism of oxidation of the oxygen-plasma process is OH radical. The conductivity of the solution did not affected the generation of oxidative species. The higher pH, the lower $H_2O_2$ and $O_3$ generation were observed. However, RNO degradation was not varied with the change of the solution pH.