• 제목/요약/키워드: 4-D degradative plasmid

검색결과 6건 처리시간 0.016초

다양한 난분해성 방향족 탄화수소를 분해하는 Pseudomonas의 균주개발 (Development of Versatile Strains of Pseudomonas Degrading Various Persistent Aromatic Hydrocarbons)

  • 이지현;최인성;박경량;박용근;이영록
    • 미생물학회지
    • /
    • 제28권3호
    • /
    • pp.236-242
    • /
    • 1990
  • 여러가지 난분해성 방향족 화합물을 분해하는 균주들을 개발하기 위해 2,4-D 분해 유전자를 갖는 재조합 플라스미드 pKG2. 나프탈렌 분해 유전자를 갖는 재조합 플라스미드 pKG3 그리고 TOL 플라스미드를 합성세제 분해능을 갖는 P p pulida KUD12와 프탈산에스테르를 분해하는 P.pUlida KUPlO에 각각 형질전환 또는 접합시켰다. P.pulida KUD12로부터 KUDIOl(pKG2), KUDI02(pKG3). KUDI03(TOL), KUD202(pKG3, TOL) 균주판, 또 P.pulida KUPlO으로부터 KUD 106(pKG2). KUD107(pKG3), KUD108(TOL) 균주을 각각 개발하였다. 개발균주의 분해능은 KUD101과 KUD102 그리고 KUD107이 원분해 균주와 비솟하였고, KUDI03과 KUD106 그리고 K KUD202는 원분해 균주보다 분해능이 떨어졌고 KUD108의 분해능은 원균주보다 우수하였다. 개발균주들의 혼합배양 에서는 KUD 107과 KUD108의 혼합배양이 다른 혼합배양틀보다 분해능이 우수한 것으로 나타났다.

  • PDF

Fate of Genetically Engineered 2,4-D-Degrading Microorganisms in Natural Soils and Waters

  • Hong, Seok-Myeong;Lee, Yin-Won;Kim, Chi-Kyung;Ka, Jong-Ok
    • Journal of Microbiology
    • /
    • 제34권4호
    • /
    • pp.320-326
    • /
    • 1996
  • To analyze the effects of host versus plasmid on survival of 2, 4-degrading bacteria in environmental samples, strains Pseudomonas cepacia/pJP4, Alcaligenes JMP228/pJP4, P. cepacia/p712, and Alcaligenes JMP228/p712 were separately inoculated into samples of field soil, paddy soil, lake water, and river water, and then the changes of their populations were measured. The strains used contained a 2, 4-D degradative plasmid, either pJP4 conferring fast-growing property to the host or p712 conferring slow-growing property, and were resistant to antibiotics such that the inoculated strains could be enumerated against the indigenous microbial populations. In sterile environmental samples, these strains were stably maintained at the levels used for inoculation, except in sterile paddy soil where Alcaligenes JMP228 strains died drapidly. In natural soil samples for four strains declined steadily with time, but in naturla water samples their polulations fell rapidly at the early phase and then remained almost constant. When the environmentla samples were treated with 2, 4-D, P. cepacia/pJP4 and P. cepacia/p712 maintained significant numbers, while Alcaligenes JMP228/pJP4 and Alcaligenes JMP228/p712 declined significantly in most of the samples. The results indicated that the survivability of genetically modified microorganisms could vary depending on the environments and that their abundance in the environments under s2, 4-D selection was markedly influenced by the nature of the 2, 4-D degradative plasmid as well as type of the host strain.

  • PDF

Effects of Genetically Different 2. 4-D-degradative Plasmids on Degradation Phenotype and Competitiveness of Soil Microorganisms

  • Hong, Seok-Myeong;Ahn, Young-Joon;Park, Yong-Keun;Min, Kyung-Hee;Kim, Chi-Kyung;Ka, Jong-Ok
    • Journal of Microbiology
    • /
    • 제33권3호
    • /
    • pp.208-214
    • /
    • 1995
  • The effects of various 2, 4-D-degradative plasmids on the axenic growth patterns, the degradation phenotypes, and the competitiveness of different host bacteria were evaluated in liquid cultures; the organisms and plasmids used were Alcaligenes eutrophus JMP134/pJP4, Alcaligenes paradoxus/p2811, Pseudomonas pickettii/p712, pJP4, and p712 or p 2811 exhibited very different restriction fragment profiles in restriction endonuclease digests. These plasmids were transferred to the recipients (P. cepacia and Alcaligenes JMP228) at relatively high frequencies ranging from 8.9 $\times$ 10$^3$ to 1.6 $\times$ 10$^5$ per donar cell. In the axenic liquid cultures the fast-growing strains, such as P. pseudomallei/p745 and P. cepacia/pJP4, exhibited short lag periods, high specific growth rates, and high relative fitness coefficients, while the slow-growing strains, such as P. pickettii/p712 and A. paradoxus/p2811, had long lag periods, low specific growth rates, and low relative fitness coefficients. Depending on the type of plasmid containing the genes for the 2, 4-D pathway, some transconjugants exhibited intermediate grwoth patterns between the fast-growing strains and the slow-growing strains. The plasmid and plasmid-host interactions determined specific growth rate and lag time, respectively, which were shown to be principal determinants of competitiveness among the strains, but relative fitness coefficient derived from the axenic culture was not always predictive for the mixed culture condition.

  • PDF

Analysis of Plasmid pJP4 Horizontal Transfer and Its Impact on Bacterial Community Structure in Natural Soil

  • KIM TAE SUNG;KIM MI SOON;JUNG MEE KUM;JOE MIN JEONG;AHN JAE HYUNG;OH KYOUNG HEE;LEE MIN HYO;KIM MIN KYUN;KA JONG OK
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권2호
    • /
    • pp.376-383
    • /
    • 2005
  • Alcaligenes sp. JMP228 carrying 2,4­dichlorophenoxyacetic acid (2,4-D) degradative plasmid pJP4 was inoculated into natural soil, and transfer of the plasmid pJP4 to indigenous soil bacteria was investigated with and without 2,4-D amendment. Plasmid pJP4 transfer was enhanced in the soils treated with 2,4-D, compared to the soils not amended with 2,4-D. Several different transconjugants were isolated from the soils treated with 2,4-D, while no indigenous transconjugants were obtained from the unamended soils. Inoculation of the soils with both the donor Alcaligenes sp. JMP228/pJP4 and a recipient Burkholderia cepacia DBO 1 produced less diverse transconjugants than the soils inoculated with the donor alone. Repetitive extragenic palindromic-polymerase chain reaction (REP-PCR) analysis of the transconjugants exhibited seven distinct genomic DNA fingerprints. Analysis of 16S rDNA sequences indicated that the transconjugants were related to members of the genera Burkholderia and Pandoraea. Denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified 16S rRNA genes revealed that inoculation of the donor caused clear changes in the bacterial community structure of the 2,4-D­amended soils. The new 16S rRNA gene bands in the DGGE profile corresponded with the 16S rRNA genes of 2,4-D­degrading transconjugants isolated from the soil. The results indicate that introduction of the 2,4-D degradative plasmid as Alcaligenes sp. JMP228/pJP4 has a substantial impact on the bacterial community structure in the 2,4-D-amended soil.

Genetic map of MCPA plasmid isolated from Pseudomonas sp. I

  • 박영두
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2010년도 추계학술대회
    • /
    • pp.663-665
    • /
    • 2010
  • By the curing and transformation experiment, it was found thatthe genes of Pseudomonas sp.KU171(pKU19) for MCPA-degrading were located on a plasmid pKU19. Also the plasmid had degradative gens for 2,4-D, 3CB, and DCP. Molecular size of pKU19 was measured to be 31.2Kb. The restriction pattern were analyzed with Eco RI, BglII,XhoI, and the restriction map was generated.

  • PDF

Isolation and Characterization of 4-(2,4-Dichlorophenoxy)Butyric Acid-Degrading Bacteria from Agricultural Soils

  • Park, In-Hyun;Ka, Jong-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권2호
    • /
    • pp.243-250
    • /
    • 2003
  • Eight numerically dominant 4-(2,4-dichlorophenoxy) butyric acid (2,4-DB)-degrading bacteria and three pairs of bacteria showing syntrophic metabolism of 2,4-DB were isolated from soils, and their phylogenetic and phenotypic characteristics were investigated. The isolates were able to utilize 2,4-DB as a sole source of carbon and energy, and their 2.4-DB degradative enzymes were induced by the presence of 2.4-DB. Analysis of 16S rDNA sequences indicated that the isolates were related to members of the genera, Variovorax, Sphingomonas, Bradyrhizobium, and Pseudomonas. The chromosomal DNA patterns of the isolates obtained by polymerase-chain-reaction (PCR) amplification of repetitive extragenic palindromic (REP) sequences were distinct from each other. Four of the isolates had plasmids, but only one strain, DB 1, rad a transmissible 2,4-D degradative plasmid. When analyzed with PCR using primers targeted to the tfdA, B, and C genes, only strains DB2 and DB9a produced DNA bands of the expected sizes with the tfdA and C primers, respectively. All of the isolates were able to degrade 2,4-D as well as 2,4-DB, suggesting that the degradation pathways of these compounds were closely related to each other, but respiratory activities of many isolates adapted to 2,4-DB metabolism were quite low with 2,4-D.