• 제목/요약/키워드: 4-D Trajectory Prediction

검색결과 12건 처리시간 0.025초

도착관리시스템 궤적 예측 모듈의 성능 개선을 위한 궤적 예측 정확도 분석 방법 연구 (Study on Trajectory Prediction Accuracy Analysis Method for Performance Improvement of a Trajectory Prediction Module of Arrival Manager)

  • 오은미;김현경;은연주;전대근
    • 한국항공운항학회지
    • /
    • 제23권3호
    • /
    • pp.28-34
    • /
    • 2015
  • An analysis method of trajectory prediction has been suggested and the developed trajectory prediction module, which is an important functional component of the Arrival Manager (AMAN) of Jeju airport, has been tested by applying the suggested method. The objective of this method is to improve prediction performance of the trajectory prediction module. The trajectory prediction module predicts the trajectories based on the real-time track data and flight plans. Therefore, the suggested analysis method includes the simulation framework which is based on real-time playback, recording, and graphic display systems for testing. Besides, the definition of time error, which is a important index for the time based scheduling system, such as AMAN, is included in the suggested analysis method. An example of arrival time prediction accuracy improvement through the suggested analysis method has also been presented.

시계열 생성적 적대 신경망을 이용한 비행체 궤적 합성 데이터 생성 및 비행체 궤적 예측에서의 활용에 관한 연구 (A Study on Synthetic Flight Vehicle Trajectory Data Generation Using Time-series Generative Adversarial Network and Its Application to Trajectory Prediction of Flight Vehicles)

  • 박인희;이창진;정찬호
    • 전기전자학회논문지
    • /
    • 제25권4호
    • /
    • pp.766-769
    • /
    • 2021
  • 딥러닝을 포함한 머신러닝 기법을 기반으로 비행체의 궤적 설계, 제어, 최적화, 예측 등의 작업을 수행하기 위해서는 일정한 양 이상의 비행체 궤적 데이터를 필요로 한다. 그러나 다양한 이유(예를 들어 비행체 궤적 데이터셋 구축에 필요한 비용, 시간, 인력 등)로 일정한 양 이상의 비행체 궤적 데이터를 확보하기 어려운 경우가 존재한다. 이러한 경우 합성 데이터 생성이 머신러닝을 가능하게 하는 방법 중 하나가 될 수 있다. 본 논문에서는 이와 같은 가능성을 탐구하기 위하여 시계열 생성적 적대 신경망을 이용하여 비행체 궤적 합성 데이터를 생성하고 평가하였다. 또한 비행체의 상태를 인식하기 위한 비행체 궤적 예측 작업에서 합성 데이터의 활용 가능성을 탐구하기 위하여 다양한 ablation study(비교 실험)를 수행하였다. 본 논문에서 제시된 생성 평가 및 비교 실험 결과는 비행체 궤적 합성 데이터 생성 및 비행체 궤적 관련 작업에서 합성 데이터의 활용 가능성에 대한 연구를 수행하고자 하는 연구자들에게 실질적인 도움이 될 것으로 예상한다.

딥러닝을 활용한 3차원 초음파 파노라마 영상 복원 (3D Ultrasound Panoramic Image Reconstruction using Deep Learning)

  • 이시열;김선호;이동언;박춘수;김민우
    • 대한의용생체공학회:의공학회지
    • /
    • 제44권4호
    • /
    • pp.255-263
    • /
    • 2023
  • Clinical ultrasound (US) is a widely used imaging modality with various clinical applications. However, capturing a large field of view often requires specialized transducers which have limitations for specific clinical scenarios. Panoramic imaging offers an alternative approach by sequentially aligning image sections acquired from freehand sweeps using a standard transducer. To reconstruct a 3D volume from these 2D sections, an external device can be employed to track the transducer's motion accurately. However, the presence of optical or electrical interferences in a clinical setting often leads to incorrect measurements from such sensors. In this paper, we propose a deep learning (DL) framework that enables the prediction of scan trajectories using only US data, eliminating the need for an external tracking device. Our approach incorporates diverse data types, including correlation volume, optical flow, B-mode images, and rawer data (IQ data). We develop a DL network capable of effectively handling these data types and introduce an attention technique to emphasize crucial local areas for precise trajectory prediction. Through extensive experimentation, we demonstrate the superiority of our proposed method over other DL-based approaches in terms of long trajectory prediction performance. Our findings highlight the potential of employing DL techniques for trajectory estimation in clinical ultrasound, offering a promising alternative for panoramic imaging.

Active Trajectory Tracking Control of AMR using Robust PID Tunning

  • Tae-Seok Jin
    • 한국산업융합학회 논문집
    • /
    • 제27권4_1호
    • /
    • pp.753-758
    • /
    • 2024
  • Trajectory tracking of the AMR robot is one research for the AMR robot navigation. For the control system of the Autonomous mobile robot(AMR) being in non-honolomic system and the complex relations among the control parameters, it is d ifficult to solve the problem based on traditional mathematics model. In this paper, we presents a simple and effective way of implementing an adaptive tracking controller based on the PID for AMR robot trajectory tracking. The method uses a non-linear model of AMR robot kinematics and thus allows an accurate prediction of the future trajectories. The proposed controller has a parallel structure that consists of PID controller with a fixed gain. The control law is constructed on the basis of Lyapunov stability theory. Computer simulation for a differentially driven non-holonomic AMR robot is carried out in the velocity and orientation tracking control of the non-holonomic AMR. The simulation results of wheel type AMR robot platform show that the proposed controller is more robust than the conventional back-stepping controller to show the effectiveness of the proposed algorithm.

En-Route Trajectory calculation using Flight Plan Information for Effective Air Traffic Management

  • Kim, Yong-Kyun;Jo, Yun-Hyun;Yun, Jin-Won;Oh, Taeck-Keun;Roh, Hee-Chang;Choi, Sang-Bang;Park, Hyo-Dal
    • Journal of Information Processing Systems
    • /
    • 제6권3호
    • /
    • pp.375-384
    • /
    • 2010
  • Trajectory modeling is foundational for 4D-Route modeling, conflict detection and air traffic flow management. This paper proposes a novel algorithm based Vincenty's fomulas for trajectory calculation, combined with the Dijkstra algorithm and Vincenty's formulas. Using flight plan simulations our experimental results show that our method of En-route trajectory calculation exhibits much improved performance in accuracy.

정상 해석 기반의 데이터베이스를 이용한 TST 비행체의 분리 궤도 예측 (PREDICTION OF SEPARATION TRAJECTORY FOR TSTO LAUNCH VEHICLE USING DATABASE BASED ON STEADY STATE ANALYSIS)

  • 조재현;안상준;권오준
    • 한국전산유체공학회지
    • /
    • 제19권2호
    • /
    • pp.86-92
    • /
    • 2014
  • In this paper, prediction of separation trajectory for Two-stage-To-Orbit space launch vehicle has been numerically simulated by using an aerodynamic database based on steady state analysis. Aerodynamic database were obtained for matrix of longitudinal and vertical positions. The steady flow simulations around the launch vehicle have been made by using a 3-D RANS flow solver based on unstructured meshes. For this purpose, a vertex-centered finite-volume method was adopted to discretize inviscid and viscous fluxes. Roe's finite difference splitting was utilized to discretize the inviscid fluxes, and the viscous fluxes were computed based on central differencing. To validate this flow solver, calculations were made for the wind-tunnel experiment model of the LGBB TSTO vehicle configuration on steady state conditions. Aerodynamic database was constructed by using flow simulations based on test matrix from the wind-tunnel experiment. ANN(Artificial Neural Network) was applied to construct interpolation function among aerodynamic variables. Separation trajectory for TSTO launch vehicle was predicted from 6-DOF equation of motion based on the interpolated function. The result of present separation trajectory calculation was compared with the trajectory using experimental database. The predicted results for the separation trajectory shows fair agreement with reference[4] solution.

폴리카보네이트 판의 경사충격에 의한 도비 거동 수치연구 (Numerical Study on Ricochet Behavior with Inclined Impact of Polycabonate Plates)

  • 양태호;이영신;조종현
    • 한국안전학회지
    • /
    • 제29권4호
    • /
    • pp.1-8
    • /
    • 2014
  • In this study, the numerical simulation using AUTODYN-3D program was investigated angle trajectory prediction for inclined impacts of projectiles. The penetration and perforation of polycarbonate plate by 7.62 mm projectile was investigated numerically. The characteristic structure of the projectile's trajectory in the polycabonate plates was studied. Two combined failure criteria were used in the target plate, and the target plate was modeled with the properties of polycarbonate for simulating the ricochet phenomenon. The effect of the angle of inclination on the trajectory and kinetic energy of the projectile were studied. The dynamic deformation behaviors tests of polycabonate were compared with numerical simulation results which can be used as predictive purpose. From the simulation, the ricochet phenomenon was occurred for angles of inclination of $0^{\circ}{\leq}{\theta}{\leq}20^{\circ}$. The projectile perforated the plate for ${\theta}{\leq}30^{\circ}$, thus defining a failure envelope for numerical configuration. The numerical analyses are used to study the effect of the projectile impact velocity on the depth of penetration (DOP). It can be observed that the residual velocities were almost linear relative to penetration velocities. It means that polycarbonate has high resistance at higher velocities.

가속도 예측 기반 새로운 선박 이동 경로 예측 방법 (A New Vessel Path Prediction Method Based on Anticipation of Acceleration of Vessel)

  • 김종희;정찬호;강도근;이창진
    • 전기전자학회논문지
    • /
    • 제24권4호
    • /
    • pp.1176-1179
    • /
    • 2020
  • 선박의 이동 경로를 예측하는 기존의 방법들은 일반적으로 위도와 경도를 직접 예측한다. 하지만, 위도와 경도를 직접 예측할 경우, 예측 모델이 출력 가능한 범위가 상당히 넓어서 예측 오차가 매우 크게 발생할 수 있다. 또한, 순환 신경망 모델 기반의 예측에서는 이전 예측 위치도 다음 위치를 예측하기 위해 사용되기 때문에 오차가 누적되는 현상도 쉽게 발생할 수 있다. 이에 따라, 제안하는 방법에서는 위도와 경도를 직접 예측하지 않고, 선박의 가속도를 예측하여, 향후 속도와 방향을 결정하고, 그 결과로 위도와 경도가 예측되는 방법을 제안한다. 실험 결과에서는 같은 순환 신경망 모델을 사용했을 때, 제안하는 방법이 기존의 직접적으로 위도와 경도를 예측하는 방법에 비해 더 적은 오차를 발생시킴을 보인다.

실가공형 CAM 시스템의 구현을 위한 가공면 예측 및 실험검증 (Machined Surface Prediction and Experimental Verification for Virtual Machining CAM System)

  • 정대혁;서석환
    • 한국CDE학회논문집
    • /
    • 제4권3호
    • /
    • pp.247-258
    • /
    • 1999
  • With the contemporary CAD/CAM system, where the tool path is generated and verified purely based on the geometric operation, geometric accuracy of the machined surface cannot be guaranteed dut to the cutting mechanics, meaning that the cutting mechanics should be incorporated in some fashion. In this paper, we incorporate the instantaneous cutting force and the tool deflection phenomena in predicting the machined surface for the finish-cut and milling operation. For the given NC dat including cutting conditions, the developed algorithm computes cutting force and deflection amount along the tool trajectory, and outputs the 3D graphic model of the machined surface together with error analysis. The validity and accuracy of the presented method has been tested by the actual cutting experiments. Experimental results and accuracy enhancement method together with implementing architecture of the VMCS (Virtual Machining CAM System) are discussed in the paper.

  • PDF

A Study on Re-entry Predictions of Uncontrolled Space Objects for Space Situational Awareness

  • Choi, Eun-Jung;Cho, Sungki;Lee, Deok-Jin;Kim, Siwoo;Jo, Jung Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • 제34권4호
    • /
    • pp.289-302
    • /
    • 2017
  • The key risk analysis technologies for the re-entry of space objects into Earth's atmosphere are divided into four categories: cataloguing and databases of the re-entry of space objects, lifetime and re-entry trajectory predictions, break-up models after re-entry and multiple debris distribution predictions, and ground impact probability models. In this study, we focused on reentry prediction, including orbital lifetime assessments, for space situational awareness systems. Re-entry predictions are very difficult and are affected by various sources of uncertainty. In particular, during uncontrolled re-entry, large spacecraft may break into several pieces of debris, and the surviving fragments can be a significant hazard for persons and properties on the ground. In recent years, specific methods and procedures have been developed to provide clear information for predicting and analyzing the re-entry of space objects and for ground-risk assessments. Representative tools include object reentry survival analysis tool (ORSAT) and debris assessment software (DAS) developed by National Aeronautics and Space Administration (NASA), spacecraft atmospheric re-entry and aerothermal break-up (SCARAB) and debris risk assessment and mitigation analysis (DRAMA) developed by European Space Agency (ESA), and semi-analytic tool for end of life analysis (STELA) developed by Centre National d'Etudes Spatiales (CNES). In this study, various surveys of existing re-entry space objects are reviewed, and an efficient re-entry prediction technique is suggested based on STELA, the life-cycle analysis tool for satellites, and DRAMA, a re-entry analysis tool. To verify the proposed method, the re-entry of the Tiangong-1 Space Lab, which is expected to re-enter Earth's atmosphere shortly, was simulated. Eventually, these results will provide a basis for space situational awareness risk analyses of the re-entry of space objects.