• 제목/요약/키워드: 4-${\alpha}$-glucanotransferase

검색결과 38건 처리시간 0.022초

Comparison of Catalyzing Properties of Bacterial 4-α-Glucanotransferases Focusing on Their Cyclizing Activity

  • Kim, Jung-Eun;Tran, Phuong Lan;Ko, Jae-Min;Kim, Sa-Rang;Kim, Jae-Han;Park, Jong-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권1호
    • /
    • pp.43-50
    • /
    • 2021
  • A newly cloned 4-α-glucanotransferase (αGT) from Deinococcus geothermalis and two typical bacterial αGTs from Thermus scotoductus and Escherichia coli (MalQ) were investigated. Among 4 types of catalysis, the cyclization activity of αGTs that produces cycloamylose (CA), a valuable carbohydrate making inclusion complexes, was intensively studied. The new αGT, DgαGT, showed close protein sequence to the αGT from T. scotoductus (TsαGT). MalQ was clearly separated from the other two αGTs in the phylogenetic and the conserved regions analyses. The reaction velocities of disproportionation, cyclization, coupling, and hydrolysis of three αGTs were determined. Intriguingly, MalQ exhibited more than 100-fold lower cyclization activity than the others. To lesser extent, the disproportionation activity of MalQ was relatively low. DgαGT and TsαGT showed similar kinetics results, but TsαGT had nearly 10-fold lower hydrolysis activity than DgαGT. Due to the very low cyclizing activity of MalQ, DgαGT and TsαGT were selected for further analyses. When amylose was treated with DgαGT or TsαGT, CA with a broad DP range was generated immediately. The DP distribution of CA had a bimodal shape (DP 7 and 27 as peaks) for the both enzymes, but larger DPs of CA quickly decreased in the DgαGT. Cyclomaltopentaose, a rare cyclic sugar, was produced at early reaction stage and accumulated as the reactions went on in the both enzymes, but the increase was more profound in the TsαGT. Taken together, we clearly demonstrated the catalytic differences between αGT groups from thermophilic and pathogenic bacteria that and showed that αGTs play different roles depending on their lifestyle.

Formation of A L-Ascorbic Acid 2-o-$\alpha$-glucoside during Kimchi Fermentation

  • Jun, Hong-Ki;Bae, Kyung-Mi;Kim, Young-Hee;Cheigh, Hong-Sik
    • Preventive Nutrition and Food Science
    • /
    • 제3권3호
    • /
    • pp.225-229
    • /
    • 1998
  • Formation of a L-Ascorbic Acid 2-O-$\alpha$-glucoside(AA-2G) is a chemically stable dervative of asocrbate that shows a vitamin C acitivity in vitro as well as in vivo. We studied whether ascorbic acid(AA) and AA-2G are formed in baechu kimchi during fermentation at 4 $^{\circ}C$ or 18$^{\circ}C$. To determine the formation of AA and AA-2G during fermentation of kimchi, wheat flour (as a carbhydrate source) added baechu kimchi (WBK) and control baechu kimchi(CBK) were prepared and fermented at 4 $^{\circ}C$ or 18 $^{\circ}C$. A substance like AA-2G was detected by HPLC from WBK fermented at 18 $^{\circ}C$ for 26 days in fall season and confirmed later to be the AA-2G showing distinctive characteristics of heat stability and resistance to ascrobate oxidase catalase. However, none of the kimchi formed AA-2G when the kimchi were fermented under a different temperature condition such as 4 $^{\circ}C$ instead of 18 $^{\circ}C$ or a different season such as summer instead of fall even if they were fermented at 18 $^{\circ}C$. The pH of kimchi was decreased rapidly during the first 3 days. and then decreased slowly after 4 days when the kimchi were fermented at 18 $^{\circ}C$. However, there were slight changes of pH in both CBK and WBK feremented at 4$^{\circ}C$ for 30 $^{\circ}C$ days. Therefore, the AA-2G -forming activity in kimchi seems to be correlated with the formentation temperature, the microorganisms involved in kimchi fermentation and a suitable glycosyl donor for AA as provided by wheat flour in this study.

  • PDF

Fed-batch Fermentations of Recombinant Escherichia coli to Produce Bacillus macerans CGTase

  • Park, Yong-Cheol;Kim, Chang-Sup;Kim, Chung-Im;Choi, Kyu-Hwan;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제7권5호
    • /
    • pp.323-328
    • /
    • 1997
  • The recombinant Escherichia coli BL21(DE3)pLysE : pTCGT1 was grown to overproduce Bacillus macerans cyclodextrin glucanotransferase (CGTase) able to synthesize ${\alpha}$-cyclodextrin (CD) with a selectivity of 67%. A number of batch fermentations were performed to test the possibility of using lactose as an inducer of the E. coli T7 promoter system. A mixture of isopropyl ${\beta}$-D-thiogalactoside (IPTG) and lactose (1 : 1) gave a maximum CGTase activity of 2.4 U/ml, which was higher than the value obtained with induction by IPTG alone. Fed-batch fermentations involving a glucose-controlled growth period followed by a gene-expression phase with mixtures of IPTG and lactose were employed to achieve high cell density and thereby increase total CGTase activity. Optimized fed-batch fermentation using the modified inducer (IPTG : lactose=1 : 3) and 100 g/l yeast extract solution in the gene-expression phase resulted in a maximum CGTase activity of 62.9 U/ml and a final cell mass of 53.5 g/l, corresponding to a 31-fold increase in CGTase activity and a 29-fold increase in cell mass compared with the control batch fermentation.

  • PDF

Glycogen Metabolism in Vibrio vulnificus Affected by malP and malQ

  • Han, Ah-Reum;Lee, Yeon-Ju;Wang, Tianshi;Kim, Jung-Wan
    • 한국미생물·생명공학회지
    • /
    • 제46권1호
    • /
    • pp.29-39
    • /
    • 2018
  • Vibrio vulnificus needs various responsive mechanisms to survive and transmit successfully in alternative niches of human and marine environments, and to ensure the acquisition of steady energy supply to facilitate such unique life style. The bacterium had genetic constitution very different from that of Escherichia coli regarding metabolism of glycogen, a major energy reserve. V. vulnificus accumulated more glycogen than other bacteria and at various levels according to culture medium and carbon source supplied in excess. Glycogen was accumulated to the highest level in Luria-Bertani (3.08 mg/mg protein) and heart infusion (4.30 mg/mg protein) complex media supplemented with 1% (w/v) maltodextrin at 3 h into the stationary phase. Regarding effect of carbon source, more glycogen was accumulated when maltodextrin (2.34 mg/mg protein) was added than when glucose or maltose (0.78.1-14 mg/mg protein) was added as an excessive carbon source to M9 minimal medium, suggesting that maltodextrin metabolism might affect glycogen metabolism very closely. These results were supported by the analysis using the malP (encoding a maltodextrin phosphorylase) and malQ (encoding a 4-${\alpha}$-glucanotransferase) mutants, which accumulated much less glycogen than wild type when either glucose or maltodextrin was supplied as an excessive carbon source, but at different levels (3.1-80.3% of wild type glycogen). Therefore, multiple pathways for glycogen metabolism were likely to function in V. vulnificus and that responding to maltodextrin might be more efficient in synthesizing glycogen. All of the glycogen samples from 3 V. vulnificus strains under various conditions showed a narrow side chain length distribution with short chains (G4-G6) as major ones. Not only the comparatively large accumulation volume but also the structure of glycogen in V. vulnificus, compared to other bacteria, may explain durability of the bacterium in external environment.

AGL gene mutation and clinical features in Korean patients with glycogen storage disease type III

  • Ko, Jung-Min;Kim, Gu-Hwan;Yoo, Han-Wook
    • Journal of Genetic Medicine
    • /
    • 제4권1호
    • /
    • pp.72-79
    • /
    • 2007
  • 목 적 : 제3형 당원병은 상염색체 열성으로 유전되는 드문 글리코겐 대사 질환이다. 글리코겐 debranching 효소는 두 가지 효소의 기능을 가지는데, amylo-1,6-glucosidase와 4-alpha-glucanotransferase가 그것이며, 제3형 당원병에서는 글리코겐 debranching 효소의 결핍으로 글리코겐의 불완전한 분해가 초래되며, 다양한 임상 및 생화학적 양상을 보이는 것으로 알려져 있다. 본 연구에서는 3명의 한국인 환자의 임상 및 생화학적 양상을 분석하고, AGL 유전자의 돌연변이 형태를 밝히고자 하였다. 방 법 : 서로 혈연 관계가 없는 3명의 한국인 제3형 당원병 환자를 대상으로, 생화학적, 조직학적, 방사선학적 특징을 포함한 임상 양상을 의무 기록을 통하여 조사하였다. 환자의 말초혈액에서 백혈구를 분리하여 추출한 genomic DNA를 사용하여 직접적 염기 서열 분석법으로 AGL 유전자의 35개 exon 및 exon과 intron의 경계 부분을 조사하여 돌연변이를 조사하였다. 결 과 : 간비대, 경련, 저신장, 고지혈증, 간효소 수치의 증가, creatine kinase 수치의 증가, 경도의 심근증 등 다양한 임상 양상이 관찰되었고, 한 명의 환자는 진행성 간섬유화로 인하여 간이식 수술을 시행 받았다. 생옥수수 전분가루의 복용은 모든 환자에서 정상 혈당을 유지시키고, 생화학적 검사 소견을 개선시키며 정상적인 성장 속도를 보이게 하였다. AGL 유전자 분석 결과 6개의 대립유전자 중 5개에서 돌연변이를 확인할 수 있었으며, 이중에 p.R428K를 제외한 4개의 돌연변이는 이제까지 보고된 적이 없는 새로운 돌연변이(c.1306delA, c.1510-1511insT, c.3416 T>C, c.1735+1 G>T)였다. 결 론 : 제3형 당원병은 임상 증상 및 중등도가 다양한 질환으로, 제1형 당원병의 증상과 유사하여 초기에 감별이 쉽지 않으며, 한국인 환자에서의 AGL 유전자의 돌연변이 양상도 매우 이질적이다.

  • PDF

Bacillus stearothermophilus KJ16이 생산하는 Cyclodextrinase의 정제와 효소특성 (Purification and Characterization of Cyclodextrinase from Bacillus stearothermophilus KJ 16)

  • 권현주;유동주;김병우
    • 생명과학회지
    • /
    • 제8권5호
    • /
    • pp.497-503
    • /
    • 1998
  • GTase와 CDase를 함께 분비$\cdot$생산하는 B. stearother-mophilus KJl6 균주의 CDase를 ammonium sulfate 침전, DBAE-cellulose, Sephadex G-100 column chromatogra-phy, 및 FPLC로 수율 7%, 비활성 12.4 units/mg, 정제도 87.6배로 정제된 CDase를 얻었으며 SDS-PAGE 상 단일 band를 확인하였다. 정제된 CDase의 분자량은 약 68,000 dalton 이었고 활성 최적 pH와 온도는 6.0와 55$^{\circ}C$였다. pH 안정성은 5.5~8.5의 범위에서 비교적 안정하였으며, 온도 안정성은 5$0^{\circ}C$에서 2시간까지는 안정하였고, 7$0^{\circ}C$에서 1시간 전처리하여도 80% 이상의 잔존활성을 나타내었다. 효소 활성은 $Cu^{+2}$$Hg^{+2}$와 같은 금속이온과 p-chlorome-rcuribenzoate, N-bromosuccinimide, mercaptoethanol, dithiothreitol에 의해서 효소활성이 강하게 저해되었다. 기질에 대한 반응 특이성은 $\gamma$ -CD를 가장 잘 분해하였으며, 그 외에 soluble starch나 amylose, amylopectin 등의 기질도 잘 분해하나 이들의 분해속도는 $\gamma$-CD에 비해서는 늦었다. 이들 기질의 최종 분해산물은 maltose였으며, maltose는 거의 분해되지 않았다.

  • PDF

한국인 제3형 당원병 환자의 임상상 및 AGL 유전자형 (AGL gene mutation and clinical features in Korean patients with glycogen storage disease type III)

  • 고정민;이정현;김구환;유한욱
    • 대한유전성대사질환학회지
    • /
    • 제6권1호
    • /
    • pp.15-23
    • /
    • 2006
  • Purpose: Glycogen storage disease type III (GSD-III), is a rare autosomal recessive disorder of glycogen metabolism. The affected enzyme is amylo-1,6-glucosidase, 4-alpha-glucanotransferase (AGL, glycogen debranching enzyme), which is responsible for the debranching of the glycogen molecule during catabolism. The disease has been demonstrated to show clinical and biochemical heterogeneity, reflecting the genotype-phenotype heterogeneity among different patients. In this study, we analyzed mutations of the AGL gene in three unrelated Korean GSD-III patients and discussed their clinical and laboratory implications. Methods: We studied three GSD-III patients and the clinical features were characterized. Sequence analysis of 35exons and part exon-intron boundaries of the AGLgene in patients were carried out by direct DNA sequencing method using genomic DNA isolated from patients' peripheral leukocytes. Results: The clinical features included hepatomegaly (in all patients), seizures (in patient 2), growth failure (in patients 1), hyperlipidemia (in patients 1 and 3), raised transaminases and creatinine kinase concentrations (in all patients) and mild EKG abnormalities (in patients 2). Liver transplantation was performed in patient 2due to progressive hepatic fibrosis. Administration of raw-corn-starch could maintain normoglycemia and improve the condition. DNA sequence analysis revealed mutations in 5 out of 6 alleles. Patient 1 was a compound heterozygote of c.1282 G>A (p.R428K) and c.1306delA (p.S603PfsX6), patient 2 with c.1510_1511insT (p.Y504LfsX10), and patient 3 with c.3416 T>C (p.L1139P) and c.l735+1 G>T (Y538_R578delfsX4) mutations. Except R428K mutation, 4 other mutations identified in3 patients were novel. Conclusion: GSD-III patients have variable phenotypic characteristics resembling GSD-Ia. The molecular defects in the AGL gene of Korean GSD-III patients were genetically heterogeneous.

  • PDF

Identification and Characterization of the Vibrio vulnificus malPQ Operon

  • LIM MOON SUB;LEE MYUNG HEE;LEE JEONG HYUN;JU HYUN-MOK;PARK NA YOUNG;JEONG HYE SOOK;RHEE JEE EUN;CHOI SANG HO
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권3호
    • /
    • pp.616-625
    • /
    • 2005
  • It is likely that maltose could provide a good substrate for the bacteria in the intestine, when the pathogenic bacteria invade and colonize in human gut. For better understanding of this organism's maltose metabolism, a mutant that was not able to grow with maltose as a sole carbon source was screened from a library of mutants constructed by a random transposon mutagenesis. By a transposon-tagging method, malPQ genes encoding a maltodextrin phosphorylase and a 4-${\alpha}$-glucanotransferase, were identified and cloned from Vibrio vulnificus. The deduced amino acid sequences of malPQ from V. vulnificus were 48 to $91\%$ similar to those of MalP and MalQ reported from other Enterobacteriaceae. Functions of malPQ genes were assessed by the construction of mutants whose malPQ genes were inactivated by allelic exchanges. When maltose was used as the sole carbon source, neither malP nor malQ mutant was able to grow to a substantial level, revealing that the MalP and MalQ are the only enzymes for metabolic utilization of maltose. The malQ mutant exhibited decreased adherence toward intestinal epithelial cells in vitro, but there was no difference in the $LD_{50}s$ of the wild-type and the malQ mutant in mice. Therefore, it appears that MalQ is less important in the pathogenesis of V. vulnificus than would have been predicted by considering maltose as a most common sugar in the intestine, but not completely dispensable for virulence in mice.