• 제목/요약/키워드: 4-${\alpha}$-glucanotransferase

Search Result 38, Processing Time 0.024 seconds

Comparison of Catalyzing Properties of Bacterial 4-α-Glucanotransferases Focusing on Their Cyclizing Activity

  • Kim, Jung-Eun;Tran, Phuong Lan;Ko, Jae-Min;Kim, Sa-Rang;Kim, Jae-Han;Park, Jong-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.43-50
    • /
    • 2021
  • A newly cloned 4-α-glucanotransferase (αGT) from Deinococcus geothermalis and two typical bacterial αGTs from Thermus scotoductus and Escherichia coli (MalQ) were investigated. Among 4 types of catalysis, the cyclization activity of αGTs that produces cycloamylose (CA), a valuable carbohydrate making inclusion complexes, was intensively studied. The new αGT, DgαGT, showed close protein sequence to the αGT from T. scotoductus (TsαGT). MalQ was clearly separated from the other two αGTs in the phylogenetic and the conserved regions analyses. The reaction velocities of disproportionation, cyclization, coupling, and hydrolysis of three αGTs were determined. Intriguingly, MalQ exhibited more than 100-fold lower cyclization activity than the others. To lesser extent, the disproportionation activity of MalQ was relatively low. DgαGT and TsαGT showed similar kinetics results, but TsαGT had nearly 10-fold lower hydrolysis activity than DgαGT. Due to the very low cyclizing activity of MalQ, DgαGT and TsαGT were selected for further analyses. When amylose was treated with DgαGT or TsαGT, CA with a broad DP range was generated immediately. The DP distribution of CA had a bimodal shape (DP 7 and 27 as peaks) for the both enzymes, but larger DPs of CA quickly decreased in the DgαGT. Cyclomaltopentaose, a rare cyclic sugar, was produced at early reaction stage and accumulated as the reactions went on in the both enzymes, but the increase was more profound in the TsαGT. Taken together, we clearly demonstrated the catalytic differences between αGT groups from thermophilic and pathogenic bacteria that and showed that αGTs play different roles depending on their lifestyle.

Formation of A L-Ascorbic Acid 2-o-$\alpha$-glucoside during Kimchi Fermentation

  • Jun, Hong-Ki;Bae, Kyung-Mi;Kim, Young-Hee;Cheigh, Hong-Sik
    • Preventive Nutrition and Food Science
    • /
    • v.3 no.3
    • /
    • pp.225-229
    • /
    • 1998
  • Formation of a L-Ascorbic Acid 2-O-$\alpha$-glucoside(AA-2G) is a chemically stable dervative of asocrbate that shows a vitamin C acitivity in vitro as well as in vivo. We studied whether ascorbic acid(AA) and AA-2G are formed in baechu kimchi during fermentation at 4 $^{\circ}C$ or 18$^{\circ}C$. To determine the formation of AA and AA-2G during fermentation of kimchi, wheat flour (as a carbhydrate source) added baechu kimchi (WBK) and control baechu kimchi(CBK) were prepared and fermented at 4 $^{\circ}C$ or 18 $^{\circ}C$. A substance like AA-2G was detected by HPLC from WBK fermented at 18 $^{\circ}C$ for 26 days in fall season and confirmed later to be the AA-2G showing distinctive characteristics of heat stability and resistance to ascrobate oxidase catalase. However, none of the kimchi formed AA-2G when the kimchi were fermented under a different temperature condition such as 4 $^{\circ}C$ instead of 18 $^{\circ}C$ or a different season such as summer instead of fall even if they were fermented at 18 $^{\circ}C$. The pH of kimchi was decreased rapidly during the first 3 days. and then decreased slowly after 4 days when the kimchi were fermented at 18 $^{\circ}C$. However, there were slight changes of pH in both CBK and WBK feremented at 4$^{\circ}C$ for 30 $^{\circ}C$ days. Therefore, the AA-2G -forming activity in kimchi seems to be correlated with the formentation temperature, the microorganisms involved in kimchi fermentation and a suitable glycosyl donor for AA as provided by wheat flour in this study.

  • PDF

Fed-batch Fermentations of Recombinant Escherichia coli to Produce Bacillus macerans CGTase

  • Park, Yong-Cheol;Kim, Chang-Sup;Kim, Chung-Im;Choi, Kyu-Hwan;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.5
    • /
    • pp.323-328
    • /
    • 1997
  • The recombinant Escherichia coli BL21(DE3)pLysE : pTCGT1 was grown to overproduce Bacillus macerans cyclodextrin glucanotransferase (CGTase) able to synthesize ${\alpha}$-cyclodextrin (CD) with a selectivity of 67%. A number of batch fermentations were performed to test the possibility of using lactose as an inducer of the E. coli T7 promoter system. A mixture of isopropyl ${\beta}$-D-thiogalactoside (IPTG) and lactose (1 : 1) gave a maximum CGTase activity of 2.4 U/ml, which was higher than the value obtained with induction by IPTG alone. Fed-batch fermentations involving a glucose-controlled growth period followed by a gene-expression phase with mixtures of IPTG and lactose were employed to achieve high cell density and thereby increase total CGTase activity. Optimized fed-batch fermentation using the modified inducer (IPTG : lactose=1 : 3) and 100 g/l yeast extract solution in the gene-expression phase resulted in a maximum CGTase activity of 62.9 U/ml and a final cell mass of 53.5 g/l, corresponding to a 31-fold increase in CGTase activity and a 29-fold increase in cell mass compared with the control batch fermentation.

  • PDF

Glycogen Metabolism in Vibrio vulnificus Affected by malP and malQ

  • Han, Ah-Reum;Lee, Yeon-Ju;Wang, Tianshi;Kim, Jung-Wan
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.1
    • /
    • pp.29-39
    • /
    • 2018
  • Vibrio vulnificus needs various responsive mechanisms to survive and transmit successfully in alternative niches of human and marine environments, and to ensure the acquisition of steady energy supply to facilitate such unique life style. The bacterium had genetic constitution very different from that of Escherichia coli regarding metabolism of glycogen, a major energy reserve. V. vulnificus accumulated more glycogen than other bacteria and at various levels according to culture medium and carbon source supplied in excess. Glycogen was accumulated to the highest level in Luria-Bertani (3.08 mg/mg protein) and heart infusion (4.30 mg/mg protein) complex media supplemented with 1% (w/v) maltodextrin at 3 h into the stationary phase. Regarding effect of carbon source, more glycogen was accumulated when maltodextrin (2.34 mg/mg protein) was added than when glucose or maltose (0.78.1-14 mg/mg protein) was added as an excessive carbon source to M9 minimal medium, suggesting that maltodextrin metabolism might affect glycogen metabolism very closely. These results were supported by the analysis using the malP (encoding a maltodextrin phosphorylase) and malQ (encoding a 4-${\alpha}$-glucanotransferase) mutants, which accumulated much less glycogen than wild type when either glucose or maltodextrin was supplied as an excessive carbon source, but at different levels (3.1-80.3% of wild type glycogen). Therefore, multiple pathways for glycogen metabolism were likely to function in V. vulnificus and that responding to maltodextrin might be more efficient in synthesizing glycogen. All of the glycogen samples from 3 V. vulnificus strains under various conditions showed a narrow side chain length distribution with short chains (G4-G6) as major ones. Not only the comparatively large accumulation volume but also the structure of glycogen in V. vulnificus, compared to other bacteria, may explain durability of the bacterium in external environment.

AGL gene mutation and clinical features in Korean patients with glycogen storage disease type III

  • Ko, Jung-Min;Kim, Gu-Hwan;Yoo, Han-Wook
    • Journal of Genetic Medicine
    • /
    • v.4 no.1
    • /
    • pp.72-79
    • /
    • 2007
  • Purpose : Glycogen storage disease type III (GSD-III) is a rare autosomal recessive disorder of glycogen metabolism. The affected enzyme, amylo-1,6-glucosidase, 4-alpha-glucanotransferase (AGL, glycogen debranching enzyme), is responsible for the debranching of the glycogen molecule during catabolism. The disease shows clinical and biochemical heterogeneity, reflecting genotype-phenotype heterogeneity among different patients. In this study, we aim at analyzing mutations of the AGL gene in three unrelated Korean GSD-III patients, and characterizing their clinical and laboratory findings. Methods : We characterized the clinical features of three unrelated Korean GSD-III patients by biochemical, histological and imaging studies. The 35 exons and part of exon-intron boundaries of AGL were analyzed by direct sequencing using genomic DNA extracted from the peripheral leukocytes of patients. Results : Diverse clinical features were observed in these patients including hepatomegaly (all patients), seizures (patient 2), grow th failure (patients 1 and 2), hyperlipidemia (patients 1 and 3), raised transaminase and creatine kinase concentrations (all patients), and mild cardiomyopathy (patient 2). Liver transplantation w as performed in patient 2 due to progressive hepatic fibrosis. A dministration of uncooked corn starch maintained normoglycemia and improved biochemical and growth profiles. DNA sequence analysis revealed mutations in 5 out of 6 alleles. Patient 1 was a compound heterozygote of c.1282 G>A (p.R428K) and c.1306delA (p.S603PfsX6), patient 2 had c.1510_1511insT (p.Y 504L fsX 10), and patient 3 had c.3416 T >C (p.L 1139P) and c.1735+1 G>T (p.Y 538_R578delfsX 4) mutations. A part from the p.R428K mutation, the 4 other substitutions identified w ere nov el. Conclusion : GSD-III patients display variable phenotypic characteristics resembling those of GSD-Ia. Molecular defects in the AGL gene of Korean GSD-III patients are genetically heterogeneous.

  • PDF

Purification and Characterization of Cyclodextrinase from Bacillus stearothermophilus KJ 16 (Bacillus stearothermophilus KJ16이 생산하는 Cyclodextrinase의 정제와 효소특성)

  • 권현주;유동주;김병우
    • Journal of Life Science
    • /
    • v.8 no.5
    • /
    • pp.497-503
    • /
    • 1998
  • Cyclodextrinase from B. stearothemophilus KJ16 that can produce both cyclodextrin(CD) glucanotransferase and cyclodextrinase was purified 87.6-fold with 7% yield by ammonium sulfate precipitation, DEAE-cellulose chromatog-raphy, Sephadex G-100 chromatography, and FPLC. The molecular weight of the purified enzyme was about 68,000 dalton by SDS-PAGE. The optimal pH and temperature were 6.0 and 55$^{\circ}C$, respectively. The enzyme was stable at 5$0^{\circ}C$ for 2 hr in the pH range of 5.5 and 8.5. The enzyme activity was inhibited strongly by mercaptoethanol, di-thiothreitol, p-chloromercuribenzoate, N-bromosuccinimide, $Cu^{+2}$and $Hg^{+2}$. The purified enzyme hydrolyzed CDs with$\gamma$-CD>$\beta$-CD>$\alpha$-CD. The enzyme also hydrolyzed linear maltodextrins and polysaccharides, but the rates of hyd-rolysis for such substrates were slow as compared to that for $\gamma$-CD. The final degradation products with all substrates were maltose and glucose. Maltose was not further hydrolyzed.

  • PDF

AGL gene mutation and clinical features in Korean patients with glycogen storage disease type III (한국인 제3형 당원병 환자의 임상상 및 AGL 유전자형)

  • Ko, Jung Min;Lee, Jung Hyun;Kim, Gu-Hwan;Yoo, Han-Wook
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.6 no.1
    • /
    • pp.15-23
    • /
    • 2006
  • Purpose: Glycogen storage disease type III (GSD-III), is a rare autosomal recessive disorder of glycogen metabolism. The affected enzyme is amylo-1,6-glucosidase, 4-alpha-glucanotransferase (AGL, glycogen debranching enzyme), which is responsible for the debranching of the glycogen molecule during catabolism. The disease has been demonstrated to show clinical and biochemical heterogeneity, reflecting the genotype-phenotype heterogeneity among different patients. In this study, we analyzed mutations of the AGL gene in three unrelated Korean GSD-III patients and discussed their clinical and laboratory implications. Methods: We studied three GSD-III patients and the clinical features were characterized. Sequence analysis of 35exons and part exon-intron boundaries of the AGLgene in patients were carried out by direct DNA sequencing method using genomic DNA isolated from patients' peripheral leukocytes. Results: The clinical features included hepatomegaly (in all patients), seizures (in patient 2), growth failure (in patients 1), hyperlipidemia (in patients 1 and 3), raised transaminases and creatinine kinase concentrations (in all patients) and mild EKG abnormalities (in patients 2). Liver transplantation was performed in patient 2due to progressive hepatic fibrosis. Administration of raw-corn-starch could maintain normoglycemia and improve the condition. DNA sequence analysis revealed mutations in 5 out of 6 alleles. Patient 1 was a compound heterozygote of c.1282 G>A (p.R428K) and c.1306delA (p.S603PfsX6), patient 2 with c.1510_1511insT (p.Y504LfsX10), and patient 3 with c.3416 T>C (p.L1139P) and c.l735+1 G>T (Y538_R578delfsX4) mutations. Except R428K mutation, 4 other mutations identified in3 patients were novel. Conclusion: GSD-III patients have variable phenotypic characteristics resembling GSD-Ia. The molecular defects in the AGL gene of Korean GSD-III patients were genetically heterogeneous.

  • PDF

Identification and Characterization of the Vibrio vulnificus malPQ Operon

  • LIM MOON SUB;LEE MYUNG HEE;LEE JEONG HYUN;JU HYUN-MOK;PARK NA YOUNG;JEONG HYE SOOK;RHEE JEE EUN;CHOI SANG HO
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.616-625
    • /
    • 2005
  • It is likely that maltose could provide a good substrate for the bacteria in the intestine, when the pathogenic bacteria invade and colonize in human gut. For better understanding of this organism's maltose metabolism, a mutant that was not able to grow with maltose as a sole carbon source was screened from a library of mutants constructed by a random transposon mutagenesis. By a transposon-tagging method, malPQ genes encoding a maltodextrin phosphorylase and a 4-${\alpha}$-glucanotransferase, were identified and cloned from Vibrio vulnificus. The deduced amino acid sequences of malPQ from V. vulnificus were 48 to $91\%$ similar to those of MalP and MalQ reported from other Enterobacteriaceae. Functions of malPQ genes were assessed by the construction of mutants whose malPQ genes were inactivated by allelic exchanges. When maltose was used as the sole carbon source, neither malP nor malQ mutant was able to grow to a substantial level, revealing that the MalP and MalQ are the only enzymes for metabolic utilization of maltose. The malQ mutant exhibited decreased adherence toward intestinal epithelial cells in vitro, but there was no difference in the $LD_{50}s$ of the wild-type and the malQ mutant in mice. Therefore, it appears that MalQ is less important in the pathogenesis of V. vulnificus than would have been predicted by considering maltose as a most common sugar in the intestine, but not completely dispensable for virulence in mice.