• Title/Summary/Keyword: 4절점 요소

Search Result 153, Processing Time 0.043 seconds

Finite element analysis of peri-implant bone stress influenced by cervical module configuration of endosseous implant (임플란트 경부형상이 주위골 응력에 미치는 영향에 관한 유한요소법적 분석)

  • Chung, Jae-Min;Jo, Kwang-Heon;Lee, Cheong-Hee;Yu, Won-Jae;Lee, Kyu-Bok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.4
    • /
    • pp.394-405
    • /
    • 2009
  • Statement of problem: Crestal bone loss, a common problem associated with dental implant, has been attributed to excessive bone stresses. Design of implant's transgingival (TG) part may affect the crestal bone stresses. Purpose: To investigate if concavely designed geometry at a dental implant's TG part reduces peri-implant bone stresses. Material and methods: A total of five differently configured TG parts were compared. Base model was the ITI one piece implant (Straumann, Waldenburg, Switzerland) characterized by straight TG part. Other 4 experimental models, i.e. Model-1 to Model-4, were designed to have concave TG part. Finite element analyses were carried out using an axisymmetric assumption. A vertical load of 50 N or an oblique load of 50 N acting at $30^{\circ}$ with the implant's long axis was applied. For a systematic stress comparison, a total of 19 reference points were defined on nodal points around the implant. The peak crestal bone stress acting at the intersection of implant and crestal bone was estimated using regression analysis from the stress results obtained at 5 reference points defined along the mid plane of the crestal bone. Results: Base Model with straight configuration at the transgingival part created highest stresses on the crestal bone. Stress level was reduced when concavity was imposed. The greater the concavity and the closer the concavity to the crestal bone level, the less the crestal stresses. Conclusion: The transgingival part of dental implant affect the crestal bone stress. And that concavely designed one may be used to reduce bone stress.

Development of a CPInterface (COMSOL-PyLith Interface) for Finite Source Inversion using the Physics-based Green's Function Matrix (물리 기반 유한 단층 미끌림 역산을 위한 CPInterface (COMSOL-PyLith Interface) 개발)

  • Minsu Kim;Byung-Dal So
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.4
    • /
    • pp.268-274
    • /
    • 2023
  • Finite source inversion is performed with a Green's function matrix and geodetic coseismic displacement. Conventionally, the Green's function matrix is constructed using the Okada model (Okada, 1985). However, for more realistic earthquake simulations, recent research has widely adopted the physics-based model, which can consider various material properties such as elasticity, viscoelasticity, and elastoplasticity. We used the physics-based software PyLith, which is suitable for earthquake modeling. However, the PyLith does not provide a mesh generator, which makes it difficult to perform finite source inversions that require numerous subfaults and observation points within the model. Therefore, in this study, we developed CPInterface (COMSOL-PyLith Interface) to improve the convenience of finite source inversion by combining the processes of creating a numerical model including sub-faults and observation points, simulating earthquake modeling, and constructing a Green's function matrix. CPInterface combines the grid generator of COMSOL with PyLith to generate the Green's function matrix automatically. CPInterface controls model and fault information with simple parameters. In addition, elastic subsurface anomalies and GPS observations can be placed flexibly in the model. CPInterface is expected to enhance the accessibility of physics-based finite source inversions by automatically generating the Green's function matrix.

Influence of crestal module design on marginal bone stress around dental implant (임플란트 경부 디자인이 변연골 응력에 미치는 영향)

  • Lim, Jung-Yoel;Cho, Jin-Hyun;Jo, Kwang-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.3
    • /
    • pp.224-231
    • /
    • 2010
  • Purpose: This study was to investigate how the crestal module design could affect the level of marginal bone stress around dental implant. Materials and methods: A submerged implant of 4.1 mm in diameter and 10 mm in length was selected as baseline model (Dentis Co., Daegu,Korea).A total of 5 experimental implants of different crestal modules were designed (Type I model : with microthread at the cervical 3 mm, Type II model : the same thread pattern as Type I but with a trans-gingival module, Type III model: the same thread pattern as the control model but with a trans-gingival module, Type IV model: one piece system with concave transgingival part, Type V model: equipped with beveled platform). Stress analysis was conducted with the use of axisy mmetric finite element modeling scheme. A force of 100 N was applied at 30 degrees from the implant axis. Results: Stress analysis has shown no stress concentration around the marginal bone for the control model. As compared to the control model, the stress levels of 0.2 mm areas away from the recorded implant were slightly lower in Type I and Type IV models, but higher in Type II, Type III and Type V models. As compared to 15.09 MPa around for the control model, the stress levels were 14.78 MPa, 18.39 MPa, 21.11 MPa, 14.63 MPa, 17.88 MPa in the cases of Type I, II, III, IV and V models. Conclusion: From these results, the conclusion was drawn that the microthread and the concavity with either crestal or trans-gingival modules maybe used in standard size dental implants to reduce marginal bone stress.