• 제목/요약/키워드: 4기통엔진

검색결과 26건 처리시간 0.022초

E-EGR Valve 내부 Carbon Deposit 억제를 위한 형상연구 (Design Change of E-EGR Valve to Suppress Carbon Deposit)

  • 이태곤;이현창;박우철;최신형;이봉섭
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2009년도 추계학술발표논문집
    • /
    • pp.531-533
    • /
    • 2009
  • 본 연구에서는 E-EGR Valve 내에 퇴적물이 쌓여 디젤엔진의 성능을 저하시키는 문제를 해결하기 위하여 CRDI 직분식 4기통 엔진에 장착된 E-EGR 밸브를 대상으로 형상변화에 따른 유동해석을 통하여 퇴적물 축적과 작동불량을 감소 시켜줄 새로운 형상을 제시하고자 하였다.

  • PDF

디이젤 엔진에서 排氣管의 屈曲度가 排氣 騷音에 미치는 影響 (Effects of Exhaust Pipe Curvature on the Exhaust Noise of a Diesel Engine)

  • 문병수;김옥현;서정윤
    • 대한기계학회논문집
    • /
    • 제10권3호
    • /
    • pp.392-398
    • /
    • 1986
  • 본 연구에서는 실험적 방법을 통하여 엔진 배기관의 굴곡 형상이 배기 소음에 미치는 영향에 대해서 고찰하였다. 엔진으로는 4기통, 배기량 2164cc의 디이젤 엔진 을 사용하였으며 엔진의 보통 사용 범위인 1200∼3200rpm, 드로틀밸브의 개방도 25∼를 100% 구간에서 실험을 수행하였다. 굴곡부의 형상으로는 대부분의 배기관 굴곡이 원 호 형태임을 고헌하여 원호형의 굴곡관과 관의 꺽임부의 영향을 고찰하기 위한 직각형 굴곡관의 두가지 형태를 택하였따. 각 엔진의 운전 조건에서 굴곡관의 형상 치수를 바꾸어 가며 배기 소음의 음압(sound pressure level, SPL)과 스펙트럼을 얻었으며 이 들을 상호 비교 검토하여 배기관 굴곡 형상의 주요 설계 변수에 의한 배기 소음의 영 향을 고찰하였다.

직렬 4기통 엔진의 가진력 해석 (Analysis of Exciting Forces for In-Line 4 Cylinders Engine)

  • 김진훈;이수종;이우현;김정렬
    • 동력기계공학회지
    • /
    • 제12권1호
    • /
    • pp.41-46
    • /
    • 2008
  • The primary objective of this study is to truly understand exciting forces of the in-line 4 cylinders engine. Exciting forces of the engine apply a source of the vehicle NVH(Noise, Vibration, Harshness). To understand exciting forces, first was governed theoretical equations for single cylinder engine. And this theoretical equations was programming using MATLAB software. To compare theoretical analysis value, was applied MSC.ADAMS software. To determined the specification of engine(2,000cc, in-line 4) was applied ADAMS/Engine module. And this specification for engine was applied ADAMS/View and MATLAB software. The geometry model for ADAMS/View analysis was produced by the 3-D design modeling software. After imported 3-D model, each rigid body was jointed suitable. Under idle speed for engine, was analysed. The results of analysis are fairly well agreed with those of three analysis method. Using MATLAB software proposed in this study, engine exciting fores can be predicted. Also using ADAMS/Engine module and ADAMS/View software, engine exciting forces can be predicted.

  • PDF

4기통 디젤엔진에서의 Lean NOx Trap 촉매 정화 특성에 관한 연구 (A Study on the Conversion Performance of Lean NOx Trap for a 4-stroke Diesel Engine)

  • 한준섭;오정모;이기형;이진하
    • 한국자동차공학회논문집
    • /
    • 제19권2호
    • /
    • pp.78-83
    • /
    • 2011
  • Diesel engine has many advantages such as high thermal efficiency, low fuel consumption and low emission of CO2. However, the diesel engine faced with strengthened emission regulation about NOx and PM. To suppress NOx emission, after-treatment systems such as Lean NOx Trap (LNT), Selective Catalytic Reduction (SCR) are considered as a more practical strategy. This paper investigated the performance of Lean NOx trap of the 4 stroke diesel engine which had a LNT catalyst. Characteristic of exhaust emission at NEDC mode was analyzed. From this result, the effect of nozzle attaching degree, injection quantity and gas flow change on NOx conversion performance was clarified.

밸런스 샤프트 적용에 따른 4기통 디젤 엔진 블록의 방사소음 특성 개선 해석 (The Analysis of NVH Characteristics of 4-Cylinerder Diesel Engine Block by Adapting Balancing Shaft)

  • 최천;서명원;김영진
    • 한국자동차공학회논문집
    • /
    • 제8권5호
    • /
    • pp.129-137
    • /
    • 2000
  • The powertrain is an important factor for the interior and exterior noise behavior of the vehicle Thus, the noise vibration and harshness(NVH) behavior of an engine is becoming a major target of the powertrain development. This paper describes the analyses with the aim to reduce the vibration and noise of an advanced inline 4-cylinder diesel engine block by use of CAE methods. The characteristics of an engine block as a main excitation source of car interior noise is studied. Particularly, The effect of balance shaft to reduce the 2nd order engine excitation force is calculated by forced vibration and radiated noise analysis. The engine exitation forces are obtained under real operating conditions. It is shown that the reduction of vibration and noise level by adapting blancing shaft is well predicted and rediated noise is directly related to the surface velocity of engine block.

  • PDF

운행 가솔린자동차 엔진성능에 미치는 튜닝 흡기 및 배기 시스템의 효과에 관한 연구 (A Study on Effects of Tuning Intake and Exhaust Systems upon Engine Performance in a Driving Gasoline Car)

  • 배명환;구영진;박희성
    • 대한기계학회논문집B
    • /
    • 제41권11호
    • /
    • pp.775-784
    • /
    • 2017
  • 본 연구의 목적은 운행자동차에 있어서 안전운행과 환경에 문제가 없는 효과적인 엔진튜닝의 작업가능성을 확인하고, 튜닝엔진의 특징을 파악하여 엔진튜닝 검사의 기초자료를 분석하는 것이다. 비튜닝 및 튜닝 엔진 2-1, 2-2, 2-3의 4종류에 대한 넓은 범위의 엔진회전수 하에서 4행정, 4기통 DOHC, 터보 인터쿨러, 수냉 가솔린엔진의 실제 운행자동차를 사용하여 공연비 및 성능 특성에 미치는 튜닝엔진의 효과를 실험적으로 조사했다. 운행 가솔린자동차에 대한 엔진의 튜닝 부분은 흡기 다기관, 흡기 파이프, 공기필터, 배기 다기관, 배기 파이프 및 소음기를 포함한다. 1인이 탑승한 5단 자동변속기를 갖는 운행 가솔린자동차 비튜닝 및 튜닝 엔진의 공연비 및 토크는 차대 동력계(Dynojet 224xLC)에 의하여 실험에 의해 측정하였다. 운행 가솔린자동차 튜닝엔진의 최대 토크는 비튜닝엔진보다 평균 103.68% 만큼 증가되었고, 튜닝엔진의 최대 출력은 비튜닝엔진보다도 평균 119.68% 만큼 증가되었음을 알았다.

4기통 엔진의 흡기계 소음제어 (Noise Control of an Air Intake system for a Four-Cylinder Engine)

  • 김태정;홍상범
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 추계학술대회논문집; 한국과학기술회관, 8 Nov. 1996
    • /
    • pp.77-83
    • /
    • 1996
  • Noise control process of an air intake system for a four-cylinder automotive engine is described. The objective of the process is reduction of induction noise without losing engine performance and changing package layout. The theory and feasibility for noise control elements are also discussed. In general, four-cylinder engines generate a lower frequency induction noise around 80-150 Hz (2400-4500 rpm) and firing frequency, valve impact noise are the main sources. In this paper, the most problematic noise source is identified first and better position of air inlet is selected between inside-fender and out-of-fender layouts. Secondly, the possible noise control approach and CAE analysis results are compared to those from speaker excitation tests. Finally, the effect of the controlled intake system after the installation to an automobile is presented.

  • PDF

차체의 탄성진동을 고려한 4기통 엔진 고무마운트의 최적설계 (Optimal Design of the 4-cylinder Engine Rubber Mounts with Elastic Vibrations of Vehicle Body)

  • 박철희;오진우
    • 한국자동차공학회논문집
    • /
    • 제6권1호
    • /
    • pp.163-181
    • /
    • 1998
  • In this study, the objective is determine the optimal design variable of engine mount system using the rubber mount of bush-type which is usually utilized in passive control to minimize vibrations of vehicle body or transmission from engine into body. The engine model adopted in this study is 4-cylinder, 4-stroke gasoline engine support- ed by 4-points. The system is modelled in 10 d.o.f.-rigid body motion of the engine & transmission in 6 d.o.f., elastic motion of vehicle body in 4 d.o.f.(1st torsional, 1st vertical and 1st & 2nd lateral bending vibration mode). To consider the elastic motion of vehicle body, find the eigenvalues and mode shapes of vehicle body by nodal testing and then determine the modal masses and stiffnesses of the body. The design variables of the engine mount system are locations, stiffness and damping coefficients of the rubber mounts(28 design variables). In case of considering the torque-roll axis for the engine, the design variables of the mount system are reduced to 22 design variables. The objective functions in optimal design process are considered by three cases, that is, 1) transmitted forces through engine mounts, 2) acceleration components of generalized coordinates for the vibration of vehicle body, 3) acceleration of specified location(where gear box) of body. three case are analyzed and compared with each other.

  • PDF

직교배열표를 이용한 4기통 SOHC 엔진용 로커암 축의 파손경계조건 평가에 관한 연구 (An Estimation on Failure Boundary Condition of Rocker Arm Shaft for 4-Cylinder SOHC Engine Using Orthogonal Array)

  • 이수진;이동우;홍순혁;조석수;주원식
    • 대한기계학회논문집A
    • /
    • 제29권9호
    • /
    • pp.1161-1168
    • /
    • 2005
  • As a result of vehicle maintenance of rocker arm shaft for 4-cylinder SOHC engine, failure analysis of rocker arm shaft is needed. Because more than $30\%$ of vehicles investigated have been fractured. Failure analysis is classified into an naked eyes, microscope and X-ray fractography etc. It can predict applied load as well as load type. These methods are applicable to components with simple boundary condition but aren't applicable to components with complex boundary condition. The existing fractography don't catch hold of failure boundary condition quantitatively. Especially, in case that the components isn't fractured at same position. We must determine the most dangerous failure boundary condition to evaluate their operation mechanism. The effect of various factors on response should be estimated to solve this statical problem. This study presents the most dangerous failure boundary condition of rocker arm shaft using orthogonal array and ANOVA in order to assure its robustness.

직렬 4기통 엔진용 밸런스 샤프트 모듈의 불평형 질량 및 베어링 위치 선정 (Optimal Location Issue on both Supporting Bearing and Unbalance Mass of the Balance Shaft Module in a Inline 4-Cylinder Engine)

  • 이동원;김찬중;배철용;이봉현
    • 한국자동차공학회논문집
    • /
    • 제18권4호
    • /
    • pp.1-7
    • /
    • 2010
  • Large quantity of bending deformation as well as irregular rotating torque fluctuation are the main struggles of the balance shaft module during a high speed rotation. Since two issues are much sensitive to the location of both supporting bearing and unbalance mass at a balance shaft, it is recommended to construct a design strategy on balance shaft at the early stage so as to save developing time and effort before approaches to the detailed design process. In this paper, an optimal design formulation is proposed to minimize the elastic strain energy due to bending as well as the kinematic energy of polar moment of inertia in rotation. Case studies of optimal design are conducted for different mass ratio as well as linear combination of objective function and its consequence reveals that global optimum of balance shaft model is existed over possible design conditions. Simulation shows that best locations of both supporting bearing and unbalance are globally 20% and 80%, respectively, over total length of a balance shaft.