• Title/Summary/Keyword: 4각덕트

Search Result 44, Processing Time 0.033 seconds

A Theoretical and Experimental Study on the Developing Turbulent Unsteady Flows in the Entrance Region of a Square Duct (정4각덕트의 입구영역에서 난류 비정상유동에 대한 이론과 실험적 연구)

  • 고영하
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.643-651
    • /
    • 1998
  • Turbulent unsteady flows in the entrance region of a square duct are investigated with a hot-wire anemometer system. The velocity waveforms the mean and turbulence components of the axial velocity and the entrance length are obtained as a major characteristics of the developing turbulent unsteady flows. An inviscid flow theory is presented to describe the developing axial mean velocity profiles. A good agreement is seen between the measured and theoretically predicted values. The propagation of turbulence generated near the entrance of the square duct is satisfactorily approximated by an empirical correlation of the propagation of turbulence proposed so far. The local turbulence intensi-ty is found to be a little smaller in the accelerating phase than in the decelerating phase. The entrance length is about 60 times as large the hydraulic diameter.

  • PDF

Measurement of turbulent flow characteristics of a square duct with a 180.deg. bend by hot wire anemometer (열선유개계에 의한 180$^{\circ}$곡관을 갖는 정사각 단면의 덕트에서의 난유유동특성의 측정)

  • 양승효;최영돈;유석재
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.900-915
    • /
    • 1988
  • Velocities and Reynolds stress in the 3-dimensional turbulent flow in a square duct with a 180.deg. bend were measured by hot wire anemometer. Slant wire was rotated to 4 directions and I type wire was rotated to 2 directions and the voltage outputs of them were combined to obtain the mean velocities and Reynolds stresses. In order to increase the accuracy of measurement, mean cubic value as well as mean square value of a voltage fluctuation across hot wire were measured and used to obtain mean velocities and Reynolds stresses. Measured data were compared with Chang et al's experimental data measured by LDV and Launder et al's numerical predictions by ASM, and found to be in good agreement with them.

Study on the Ventilation System Applicability of High-rise Hog Building for Growing-fattening (고상식 육성비육돈사에 적합한 환기시스템에 관한 연구)

  • Yoo, Yong-Hee;Song, Jun-Ik;Choi, Dong-Yoon;Chung, Eui-Soo;Jeon, Kyoung-Ho;Lee, Poong-Yeon;Kim, Sang-Woo;Jeung, Jong-Won
    • Journal of Animal Environmental Science
    • /
    • v.16 no.1
    • /
    • pp.41-50
    • /
    • 2010
  • The goal of this study was to develop a suitable ventilation system for high-rise hog building (HRHB) for growing-fattening with combined slatted floor pen in second story and in situ manure management system in Korea. The HRHB was constructed as 29m long, 9m wide and 7.6m high for outer dimension with an indoor height of 3.1m and 2.4 for lower and upper floor, respectively. Ventilation systems for each treatment were installed in separated rooms of HRHB. The ventilation types installed in each room were following 3 types: ventilation type 1 (V1), where air was pulled through a circular duct inlet and exhausted by fans; ventilation type 2 (V2), where air was pulled through eave inlet (side ceiling inlet) and exhausted by fans; and ventilation type 3 (V3), where air was pulled through baffled ceiling inlet and exhausted by fans. For each ventilation system, investigated air velocity under minimum, medium and maximum ventilation ratio and air flow pattern inside. The results were as follows; For air flow pattern from top to bottom, V1 showed a homogeneous vertical type, V2 showed a bilateral symmetry type and V3 showed an vertical umbrella type. Under minimum ventilation ratio, air velocity in upper floor (80cm above the slated floor) was similar for V1, V2, and V3. Under maximum ventilation ratio, air velocity in upper floor was undeviating for V1 (0.10~0.26m/s) and varied for V2 (0.12~0.63m/s) while those for V3 was relatively slow and less varied (0.07~0.15m/s). In conclusion, Duct inlet type (V1) can be applied to the development of a new HRHB with additional evaluations such as field test hog feeding.

Wall Shear Stress and Pressure Distributions of Developing Turbulent Oscillatory Flows in an Oscillator Connected to Curved Duct (가진 펌프에 연결된 곡관덕트에서 난류진동유동의 전단응력분포와 압력분포)

  • Sohn, Hyun-Chull;Lee, Hong-Gu;Lee, Haeng-Nam;Park, Gil-Moon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.4 s.13
    • /
    • pp.37-42
    • /
    • 2001
  • In the present study, flow characteristics of turbulent oscillatory flow in an oscillator connected to square-sectional $180^{\circ}$ curved duct are investigated experimentally. In order to investigate wall shear stress and pressure distributions, the experimental studies for air flows we conducted in a square-sectional $180^{\circ}$ curved duct by using the LDV system with the data acquisitions and the processing system. The wall shear stress at bend angle of the $150^{\circ}$ and pressure distribution of the inlet (${\phi}=0^{\circ}$) to the outlet (${\phi}=180^{\circ}$) by $10^{\circ}$ intervals of the duct are measured. The results obtained from the experiment are summarized as follows : wall shear stress values in the inner wall we larger than those in an outer wall, except for the phase angle (${\omega}t/{\pi}/6$) of 3, because of the intensity of secondary flow. The pressure distributions are the largest in accelerating and decelerating regions at the bend angle(${\phi}$) of $90^{\circ}$ and pressure difference of inner and outer walls is the largest before and after the ${\phi}=90^{\circ}$.

  • PDF

Measurement of turbulent flow characteristics of a rectangular duct with a 180.deg. bend by hot wire anemometer (열선유속계에 의한 180.deg.곡관을 갖는 직사각 단면덕트에서의 난류유동 특성의 측정)

  • 박호영;유석재;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.734-746
    • /
    • 1990
  • Velocities and Reynolds stresses in 3-dimensional turbulent flow in rectangular ducts with a 180.deg. bend were measured by hot wire anemometer. Slant wire was rotated to 4 directions and I type wire was rotated to 2 directions and the voltage outputs of them were combined to obtain the mean velocities and Reynolds stresses. Flow characteristics in the 1.5:1 and 2:1 cross secioned 180.deg. bend were measured and the results were compared with the data from Moon for the square sectioned 180.deg. bend flow. Flows in rectangular sectioned 180.deg. bend show the reduction in secondary flow and therefore the reduction of double maximum in local mean velocities.

The Study on Performance of an Axial Fan with Centrifugal type Blades in Duct flow (덕트 내 원심식 축류팬의 성능변화에 관한 연구)

  • Han, Jae-Oh;Lee, Soo-Young;Yu, Seung-Hun;Lee, Jai-Kwon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.213-216
    • /
    • 2006
  • This paper was a study about noise reduction through flow stabilization in duct using experimental method and numerical analysis at the same time. To determine the fan's type three kinds of fans(axial fan, centrifugal fan, and axial fan with centrifugal type blades) was examined to investigate the suitability for in-line duct. As a result, under the equal number of rotation 2000 RPM, performance of an axial fan with centrifugal type blades was the most superior by 55dBA at 4.3CMM among other fans. After this, analyzed the results of the numerical analysis to find out the optimum design of pitch angle such as $0^{\circ}$, $10^{\circ}$, $15^{\circ}$ and $20^{\circ}$. The intensity of turbulence was low when pitch angle was $15^{\circ}$ and air volume became peak by 5.08 CMM. It was observed that axis component of velocity increased gradually when pitch angle increased from $0^{\circ}$ to $20^{\circ}$, and embodied noise reduction and improvement of air flow rate through flow stabilization.

  • PDF

Heat/Mass Transfer Characteristics on Rotating Square Channel with Bleed Holes (유출홀이 설치된 회전하는 정사각 유로에서의 열/물질전달 특성)

  • Kim, Sang-In;Kim, Kyung-Min;Lee, Dong-Hyun;Lee, Dong-Ho;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1104-1109
    • /
    • 2004
  • The present study has been conducted to investigate convective heat/mass transfer inside the cooling passage with bleed holes. The rotating square channel has 40.0 mm hydraulic diameter and the bleed holes on the leading surface of the channel. The hole diameter of bleed hole is 4.5 mm and its spacing (P/d=4.9) is about five times of hole diameter. Mass flow rate through bleed holes is 10% of the main flow rate and rotation number is changed form 0.0 to 0.4. A naphthalene sublimation technique is employed to determine the detailed local heat transfer coefficients using the heat and mass transfer analogy. The cooling performance is influenced by mass flow rate through bleed holes and Coriolis force of rotating channel for fixed reynolds number. The heat transfer is enhanced around holes on the leading surface because of trapping flow by bleeding. However heat transfer on the leading surface is decreased due to Coriolis force.

  • PDF

A Study on Turbulent Characteristics of Turbulent Pulsating Flows in a Square Duct (4각 덕트내에서 난류 맥동유동의 난류특성에 관한 연구)

  • Park, G.M.;Go, Y.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.3
    • /
    • pp.188-198
    • /
    • 1990
  • Turbulent characteristics of turbulent pulsating flows were studied experimentally in a square duct. Velocity waveforms, velocity profiles, and turbulent intensity of turbulent pulsating flow were investigated by using a hot-wire anemometer with data acquisition and a processing system in a square duct with a ratio of 1 ($40mm{\times}40mm$) to 4,000mm long. Turbulent components were shown to be larger in decelerating than in accelerating regions and also larger for a large phase of velocity and U'rms distribution of turbulent flow. The effect of velocity amplitude ratio does not exist for specified time [${\theta}(z^{\prime})$], amplitude ratio (${\mid}U^{\prime}_{rms.os.1}{\mid}/{\mid}U_{m.os.1}{\mid}$), and phase difference (${\Delta}U^{\prime}_{rms.os.1}-{\Delta}U_{m.os.1}$) in either turbulent oscillating or cross-sectional mean velocity components. The effect of dimensionless angular frequency for specified time [${\theta}(z^{\prime})$] can be disregarded because the dimensionless angular frequency does not affect the specified time. The velocity distributions of turbulent pulsating flows for various time-averaged Reynolds numbers are in approximate agreement with the velocity distributions for equivalent Reynolds numbers and 1/7th power law of steady flow.

  • PDF

Effect of Guide Nozzle Shape on the Performance Improvement of a Very Low Head Cross Flow Turbine

  • Chen, Zhenmu;Singh, Patrick Mark;Choi, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.5
    • /
    • pp.19-26
    • /
    • 2014
  • The cross flow turbine attracts more and more attention for its relatively wide operating range and simple structure. In this study, a novel type of micro cross flow turbine is developed for application to a step in an irrigational channel. The head of the turbine is only H=4.3m and the turbine inlet channel is open ducted type, which has barely been studied. The efficiency of the turbine with inlet open duct channel is relatively low. Therefore, a guide nozzle on the turbine inlet is attached to improve the performance of the turbine. The guide nozzle shapes are investigated to find the best shape for the turbine. The guide nozzle plays an important role on directing flow at the runner entry, and it also decreases the negative torque loss by reducing the pressure difference in Region 1. There is 12.5% of efficiency improvement by attaching a well shaped guide nozzle on the turbine inlet.

Velocity Profiles and Entrance Length of Transitional Oscillatory Flows in the Entrance Region of a Square Duct (정(正)4각(角)덕트 입구영역(入口領域)에서 천이(遷移) 진동유동(振動流動)의 입구(入口)길이와 속도분포(速度分布))

  • Choi, J.H.;Choi, B.M.;Yoo, Y.T.
    • Journal of Biosystems Engineering
    • /
    • v.18 no.3
    • /
    • pp.275-287
    • /
    • 1993
  • The flow characteristics of the transitional oscillatory flows are investigated analytically and experimentally in the entrance region of a square duct. The systems of conservation equations are analytically solved by linearizing the non-linear convective terms for the developing transitional oscillatory flows in a square duct. The analytical solutions are obtained in the form of infinite series for the velocity profiles. The experimental study for the air flow in a square duct is carried out to measure the velocity profiles and waveforms by using a hot-wire anemometer with the data acquisition and processing systems. The theoretical and experimental results provide the major characteristics of the developing transitional oscillatory flows, such as velocity profiles, velocity waveforms, and entrance length. The velocity profiles in the decelerating phase are larger than those in the accelerating phase for the developing transitional oscillatory flows. The correlations of the entrance length of the transitional oscillatory flows in a square duct are found to be $Le/Dh=K{\cdot}Re_{os}/2({\omega}^+)^2$, where K is 1.23 of an experimental constant.

  • PDF