• 제목/요약/키워드: 4$\beta$-acetoxyscirpendiol

검색결과 3건 처리시간 0.019초

Paecilomyces tenuipes로부터 분리한 Acetoxyscirpendiol의 세포사멸작용 (Cytotoxicity of Acetoxyscirpendiol from Paecilomyces tenuipes)

  • 한희창;김미정;김종수;김하원
    • 약학회지
    • /
    • 제48권2호
    • /
    • pp.153-158
    • /
    • 2004
  • Paecilomyces tenuipes is one of the famous Chinese medicinal entomopathogenic fungi that parasite in the lavae of silkworm. A cytotoxic compound, 4$\beta$-acetoxyscirpendiol (ASD) was isolated from a methanolic extracts of Paecilomyces tenuipes. The ASD compound belongs to scirpenol subfamily of trichothecene mycotoxin. In a continuation of the elucidation of the mechanism of ASD, we report here the evidences of induction of apoptosis by ASD in human Jurkat T cell line. In MTT reduction assay for monitoring cell viability, ASD showed strong toxicity. The 50 percent inhibitory concentrations of ASD against human T lymphoid Jurkat cell was 59.5 ng/$m\ell$. Phosphatidylserine externalization was increased by ASD at 3 and 6 hrs when compared with that of 6 hrs in the cell line showing in a time-dependent manner. When whole lysates of cells treated with ASD were subjected to western blot assay, 113 kDa poly(ADP-ribose) polymerase (PARP) was significantly cleaved to 89 kDa fragment. Time-dependent DNA fragmentation was also observed when Jurkat T cells were treated with ASD at 100 ng/$m\ell$ for 6 hrs and 18 hrs at the ratios of 8.5% and 15.0%, respectively. From these data, Jurkat T lymphocytes treated with ASD from Paecilomyces tenuipes underwent typical cascades of apoptotic cell death.

4-Acetoxyscirpendiol of Paecilomyces tenuipes Inhibits Na+/D-Glucose Cotransporter Expressed in Xenopus laevis Oocytes

  • Yoo, Oc-Ki;Son, Joo-Hiuk;Lee, Dong-Hee
    • BMB Reports
    • /
    • 제38권2호
    • /
    • pp.211-217
    • /
    • 2005
  • Cordyceps, an entomopathogenic fungus, contains many health-promoting ingredients. Recent reports indicate that the consumption of cordyceps helps reduce blood-sugar content in diabetics. However, the mechanism underlying this reduction in circulatory sugar content is not fully understood. Methanolic extracts were prepared from the fruiting bodies of Paecilomyces tenuipes, and 4-beta acetoxyscirpendiol (4-ASD) was eventually isolated and purified. $Na^+$/Glucose transporter-1 (SGLT-1) was expressed in Xenopus oocytes, and the effect of 4-ASD on SGLT-1 was analyzed utilizing a voltage clamp and by performing 2-deoxy-D-glucose (2-DOG) uptake studies. 4-ASD was shown to significantly inhibit SGLT-1 activity compared to the non-treated control in a dose-dependent manner. In the presence of the derivatives of 4-ASD (diacetoxyscirpenol or 15-acetoxyscirpendiol), SGLT-1 activity was greatly inhibited in an 4-ASD-like manner. Of these derivatives, 15-acetoxyscirepenol inhibited SGLT-1 as well as 4-ASD, whereas diacetoxyscirpenol was slightly less effective. Taken together, these results strongly indicate that 4-ASD in P. tenuipes may lower blood sugar levels in the circulatory system. We conclude that 4-ASD and its derivatives are effective SGLT-1 inhibitors.

Characterization of Acetoxyscirpendiol of Paecilomyces tenuipes as Inhibitor of Sodium Glucose Co-transporters Expressed in Xenopus laevis Oocytes

  • Park, Il-Woon;Hwang, Gwi-Seo;Kim, Ha-Won;Lee, Dong-Hee
    • Biomolecules & Therapeutics
    • /
    • 제12권4호
    • /
    • pp.250-256
    • /
    • 2004
  • Cordyceps possesses numerous health-promoting ingredients including hypoglycemic agents. The mechanism for the reduction of circulatory sugar content, however, is still not fully understand. In this study, 4-beta acetoxyscirpendiol (ASD) was purified from the methanolic extracts from fruiting bodies of Paecilomyces tenuipes. Na+/Glucose transporter-1 (SGLT-1) was expressed in the Xenopus oocytes. The effect of ASD on the oocyte expressed SGLT-1 was analyzed utilizing the voltage clamp and 2-deoxy-D-glucose (2-DOG) uptake studies. ASD was shown to significantly inhibit SGLT-1 activity compared to the non-treated control in a dose- dependent manner. In the presense of its two derivatives (diacetoxyscirpenol or 15-acetoxyscirpendiol), SGLT-1 activity was greatly inhibited similarly as ASD. Between ASD derivatives, 15-acetoxyscirepenol showed inhibition equivalent to that of ASD while diacetoxyscirpenol did less degree of inhibition. Insummary , these results strongly indicate that ASD in P. tenuipes may serve as a functional substance in lowering blood sugar in the circulatory system. ASD and its derivatives can be utilized as inhibitors of SGLT-1.