• Title/Summary/Keyword: 3d radar

Search Result 390, Processing Time 0.025 seconds

A Chaff Simulator for an Aircraft (항공기용 채프 운용 시뮬레이터의 구현)

  • Chae, Gyoo-Soo;Lim, Joong-Soo;Kim, Min-Nyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.986-991
    • /
    • 2008
  • This paper presents a simulator developed for effective use of chaff which is widely employing for aircraft protection. We calculate the scattered electric field based on the aircraft and the chaff RCS. Input parameters calculated using Matlab are forwarded to the input module of the presented simulator which provides a three dimensional display fur the three different scenarios.

Performance Evaluation of the Modified IMMPDA Filter Using 3-D Maneuvering Targets In Clutter (클러터 환경하에서 3 차원 기동표적을 사용한 수정된 IMMPDA 필터의 성능 분석)

  • 김기철;홍금식;최성린
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.211-211
    • /
    • 2000
  • The multiple targets tracking problem has been one of main issues in the radar applications area in the last decade. Besides the standard Kalman filtering, various methods including the variable dimension filter, input estimation filter, interacting multiple model (IMM) filter, federated variable dimension filter with input estimation, probable data association (PDA) filter etc. have been proposed to address the tracking and sensor fusion issues. In this paper, two existing tracking algorithms, i.e. the IMMPDA filter and the variable dimension filter with input estimation (VDIE), are combined for the purpose of improving the tracking performance of maneuvering targets in clutter. To evaluate the tracking performance of the proposed algorithm, three typical maneuvering patterns i.e. Waver, Pop-Up, and High-Diver motions, are defined and are applied to the modified IMMPDA filter considered as well as the standard IMM filter. The smaller RMS tracking errors, in position and velocity, of the modified IMMPDA filter than the standard IMM filter are demonstrated through computer simulations.

  • PDF

Real-time signal processing of LADAR image (LADAR 영상의 실시간 신호 처리)

  • Ha, Choong-lim;Nam, Jai-du;Kim, Young-kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.387-390
    • /
    • 2017
  • With the advent of high-resolution sensors in the embedded field, the demand for heterogeneous computing continues to increase. Logic Module is an embedded system for controlling LADAR system components and for real-time 3D imaging of laser radar image data. In this paper, we discuss the design of Logic Module and the signal processing using CPU-GPU heterogeneous computing.

  • PDF

Effective Separation Method for Single-Channel Time-Frequency Overlapped Signals Based on Improved Empirical Wavelet Transform

  • Liu, Zhipeng;Li, Lichun;Li, Huiqi;Liu, Chang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2434-2453
    • /
    • 2019
  • To improve the separation performance of time-frequency overlapped radar and communication signals from a single channel, this paper proposes an effective separation method based on an improved empirical wavelet transform (EWT) that introduces a fast boundary detection mechanism. The fast boundary detection mechanism can be regarded as a process of searching, difference optimization, and continuity detection of the important local minima in the Fourier spectrum that enables determination of the sub-band boundary and thus allows multiple signal components to be distinguished. An orthogonal empirical wavelet filter bank that was designed for signal adaptive reconstruction is then used to separate the input time-frequency overlapped signals. The experimental results show that if two source components are completely overlapped within the time domain and the spectrum overlap ratio is less than 60%, the average separation performance is improved by approximately 32.3% when compared with the classic EWT; the proposed method also improves the suitability for multiple frequency shift keying (MFSK) and reduces the algorithm complexity.

Monostatic RCS Measurement for Dielectric Barrier Discharge Plasma (유전체 장벽 방전 플라즈마의 Monostatic 레이다 단면적 측정)

  • Lee, Hyunjae;Jung, Inkyun;Ha, Jungje;Shin, Woongjae;Yang, Jin Mo;Lee, Yongshik;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.3
    • /
    • pp.246-252
    • /
    • 2016
  • In this paper, reduction of monostatic RCS by DBD plasma is measured. For the calibration of monostatic RCS, S-parameters of two metallic plate in different sizes are used and the result is within 0.4 dB error. Metallic plate is put behind DBD plasma generator for measuring reduction of monostatic RCS by DBD plasma. To prevent arc discharge between metallic plate and DBD plasma generator, measurement is progressed spacing the interval between metallic plate and DBD plasma generator. As a result, maximum reduction of monostatic RCS is about 3 dB at 7.4 GHz.

77-GHz Slot Array Antenna Using PCB and ACF (PCB와 ACF를 이용한 77 GHz 슬롯 배열 안테나)

  • Yoon, Pyoung-Hwa;Kwon, Oh-Yun;Song, Reem;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.10
    • /
    • pp.752-757
    • /
    • 2018
  • This study presents the performance evaluation results of a 77-GHz waveguide slot array antenna that was fabricated by attaching a patterned printed circuit board(PCB) on a metal block. The 77-GHz waveguide was divided into a top plate and a bottom structure. The top plate was fabricated using a patterned PCB that can implement a fine slot at low cost. The top cover was then bonded to the bottom metal structure with a waveguide trough using anisotropic conductive film. For evaluating the antenna performance, a $1{\times}16$ slot array antenna was fabricated using our proposed method and the gain and pattern were measured and compared with the simulation results. Though the measurement results demonstrate a reduction in gain of around 2.3~3.5 dB compared to the simulation results assuming ideal bonding conditions, the pattern hardly changed and the slot antenna with a gain of approximately 17 dBi at 77 GHz can be easily manufactured at a low cost using the proposed method.

Design of a K-band microstrip array antenna for an adaptive cruise control system (지능형 순항제어 시스템용 24GHz 대역 배열 안테나 설계)

  • Chae, Gyoo-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.8
    • /
    • pp.1839-1842
    • /
    • 2009
  • This paper describes a K-band microstrip patch antenna suitable for an adaptive cruise control(ACC) system. The presented transmitting and receiving patch antennas are designed with $1{\times}2$ array. The antennas are simulated using CST MWS and manufactured using RO-4003(h=0.5mm, ${\epsilon}r=3.38$). The antennas are installed on the backside of the sensor circuit and measured. The estimated gain and beamwidth are 8.5dBi and about $50^{\circ}$ respectively. The measured bandwidth is about 1GHz($VSWR{\le}2$) which satisfies the desired specification.

Efficient Recognition Method for Ballistic Warheads by the Fusion of Feature Vectors Based on Flight Phase (비행 단계별 특성벡터 융합을 통한 효과적인 탄두 식별방법)

  • Choi, In-Oh;Kim, Si-Ho;Jung, Joo-Ho;Kim, Kyung-Tae;Park, Sang-Hong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.6
    • /
    • pp.487-497
    • /
    • 2019
  • It is very difficult to detect ballistic missiles because of small cross-sections of the radar and the high maneuverability of the missiles. In addition, it is very difficult to recognize and intercept warheads because of the existence of debris and decoy with similar motion parameters in each flight phase. Therefore, feature vectors based on the maneuver, the micro-motion according to flight phase are needed, and the two types of features must be fused for the efficient recognition of ballistic warhead regardless of the flight phase. In this paper, we introduce feature vectors appropriate for each flight phase and an effective method to fuse them at the feature vector-level and classifier-level. According to the classification simulations using the radar signals predicted by the CAD models, the closer the warhead was to the final destination, the more improved was the classification performance. This was achieved by the classifier-level fusion, regardless of the flight phase in a noisy environment.

Development and Performance Compensation of the Extremely Stable Transceiver System for High Resolution Wideband Active Phased Array Synthetic Aperture Radar (고해상도 능동 위상 배열 영상 레이더를 위한 고안정 송수신 시스템 개발 및 성능 보정 연구)

  • Sung, Jin-Bong;Kim, Se-Young;Lee, Jong-Hwan;Jeon, Byeong-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.573-582
    • /
    • 2010
  • In this paper, X-band transceiver for high resolution wideband SAR systems is designed and fabricated. Also as a technique for enhancing the performance, error compensation algorithm is presented. The transceiver for SAR system is composed of transmitter, receiver, switch matrix and frequency generator. The receiver especially has 2 channel mono-pulse structure for ground moving target indication. The transceiver is able to provide the deramping signal for high resolution mode and select the receive bandwidth for receiving according to the operation mode. The transceiver had over 300 MHz bandwidth in X-band and 13.3 dBm output power which is appropriate to drive the T/R module. The receiver gain and noise figure was 39 dB and 3.96 dB respectively. The receive dynamic range was 30 dB and amplitude imbalance and phase imbalance of I/Q channel was ${\pm}$0.38 dBm and ${\pm}$3.47 degree respectively. The transceiver meets the required electrical performances through the individual tests. This paper shows the pulse error term depending on SAR performance was analyzed and range IRF was enhanced by applying the compensation technique.

3D LIDAR Based Vehicle Localization Using Synthetic Reflectivity Map for Road and Wall in Tunnel

  • Im, Jun-Hyuck;Im, Sung-Hyuck;Song, Jong-Hwa;Jee, Gyu-In
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.4
    • /
    • pp.159-166
    • /
    • 2017
  • The position of autonomous driving vehicle is basically acquired through the global positioning system (GPS). However, GPS signals cannot be received in tunnels. Due to this limitation, localization of autonomous driving vehicles can be made through sensors mounted on them. In particular, a 3D Light Detection and Ranging (LIDAR) system is used for longitudinal position error correction. Few feature points and structures that can be used for localization of vehicles are available in tunnels. Since lanes in the road are normally marked by solid line, it cannot be used to recognize a longitudinal position. In addition, only a small number of structures that are separated from the tunnel walls such as sign boards or jet fans are available. Thus, it is necessary to extract usable information from tunnels to recognize a longitudinal position. In this paper, fire hydrants and evacuation guide lights attached at both sides of tunnel walls were used to recognize a longitudinal position. These structures have highly distinctive reflectivity from the surrounding walls, which can be distinguished using LIDAR reflectivity data. Furthermore, reflectivity information of tunnel walls was fused with the road surface reflectivity map to generate a synthetic reflectivity map. When the synthetic reflectivity map was used, localization of vehicles was able through correlation matching with the local maps generated from the current LIDAR data. The experiments were conducted at an expressway including Maseong Tunnel (approximately 1.5 km long). The experiment results showed that the root mean square (RMS) position errors in lateral and longitudinal directions were 0.19 m and 0.35 m, respectively, exhibiting precise localization accuracy.