• Title/Summary/Keyword: 3d depth map

Search Result 276, Processing Time 0.023 seconds

2.5D human pose estimation for shadow puppet animation

  • Liu, Shiguang;Hua, Guoguang;Li, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2042-2059
    • /
    • 2019
  • Digital shadow puppet has traditionally relied on expensive motion capture equipments and complex design. In this paper, a low-cost driven technique is presented, that captures human pose estimation data with simple camera from real scenarios, and use them to drive virtual Chinese shadow play in a 2.5D scene. We propose a special method for extracting human pose data for driving virtual Chinese shadow play, which is called 2.5D human pose estimation. Firstly, we use the 3D human pose estimation method to obtain the initial data. In the process of the following transformation, we treat the depth feature as an implicit feature, and map body joints to the range of constraints. We call the obtain pose data as 2.5D pose data. However, the 2.5D pose data can not better control the shadow puppet directly, due to the difference in motion pattern and composition structure between real pose and shadow puppet. To this end, the 2.5D pose data transformation is carried out in the implicit pose mapping space based on self-network and the final 2.5D pose expression data is produced for animating shadow puppets. Experimental results have demonstrated the effectiveness of our new method.

Model-based 3D Multiview Object Implementation by OpenGL (OpenGL을 이용한 모델기반 3D 다시점 영상 객체 구현)

  • Oh, Won-Sik;Kim, Dong-Wook;Kim, Hwa-Sung;Yoo, Ji-Sang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.59-62
    • /
    • 2006
  • 본 논문에서는 OpenGL Rendering을 이용한 모델기반 3D 다시점 영상의 객체 구현을 위한 구성과 각 모듈에 적용되는 알고리즘에 대해 중점적으로 연구하였다. 한 장의 텍스쳐 이미지와 깊이 맵(Depth Map)을 가지고 다시점 객체를 생성하기 위해, 먼저 깊이 정보의 전처리 과정을 거친다. 전처리 된 깊이 정보는 OpenGL상에서의 일정 간격의 꼭지점(Vertex) 정보로 샘플링 된다. 샘플링 된 꼭지점 정보는 깊이 정보를 z값으로 가지는 3차원 공간 좌표상의 점이다. 이 꼭지점 정보를 기반으로 텍스쳐 맵핑 (texture mapping)을 위한 폴리곤(polygon)을 구성하기 위해 딜루이니 삼각화(Delaunay Triangulations) 알고리즘이 적용되었다. 이렇게 구성된 폴리곤 위에 텍스쳐 이미지를 맵핑하여 OpenGL의 좌표 연산을 통해 시점을 자유롭게 조정할 수 있는 객체를 만들었다. 제한된 하나의 이미지와 깊이 정보만을 가지고 좀 더 넓은 범위의 시점을 가지는 다시점 객체를 생성하기 위해, 새로운 꼭지점을 생성하여 폴리곤을 확장시켜 기존보다 더 넓은 시점을 확보할 수 있었다. 또한 렌더링된 모델의 경계 영역 부분의 깊이정보 평활화를 통해 시각적인 개선을 이룰 수 있었다.

  • PDF

Depth Map Processing for Improving Stereoscopic Image and CGH (입체영상 및 CGH 화질 개선을 위한 깊이맵 처리)

  • Gil, Jong In;Kim, Manbae
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.27-29
    • /
    • 2010
  • 깊이데이터는 CG 또는 실사 영상에서 획득되는데 입체 영상 분야에서 활용도가 높다. 예를 들어 2D영상의 3D화질 개선, 입체영상의 입체감 개선 등의 활용이 되고 있다. 본 논문에서는 이러한 추세에 맞추어 홀로그램을 생성하는 입력 데이터의 전처리과정으로 통하여 CGH 홀로그램을 개선하는 영상처리 기술을 제안한다. 입력 데이터의 전처리를 통해 생성된 홀로그램 영상의 화질 개선을 제안하고, 실험을 통해 제안 방법의 우수성을 보여준다.

  • PDF

A Depth-based Disocclusion Filling Method for Virtual Viewpoint Image Synthesis (가상 시점 영상 합성을 위한 깊이 기반 가려짐 영역 메움법)

  • Ahn, Il-Koo;Kim, Chang-Ick
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.6
    • /
    • pp.48-60
    • /
    • 2011
  • Nowadays, the 3D community is actively researching on 3D imaging and free-viewpoint video (FVV). The free-viewpoint rendering in multi-view video, virtually move through the scenes in order to create different viewpoints, has become a popular topic in 3D research that can lead to various applications. However, there are restrictions of cost-effectiveness and occupying large bandwidth in video transmission. An alternative to solve this problem is to generate virtual views using a single texture image and a corresponding depth image. A critical issue on generating virtual views is that the regions occluded by the foreground (FG) objects in the original views may become visible in the synthesized views. Filling this disocclusions (holes) in a visually plausible manner determines the quality of synthesis results. In this paper, a new approach for handling disocclusions using depth based inpainting algorithm in synthesized views is presented. Patch based non-parametric texture synthesis which shows excellent performance has two critical elements: determining where to fill first and determining what patch to be copied. In this work, a noise-robust filling priority using the structure tensor of Hessian matrix is proposed. Moreover, a patch matching algorithm excluding foreground region using depth map and considering epipolar line is proposed. Superiority of the proposed method over the existing methods is proved by comparing the experimental results.

Rotation Invariant 3D Star Skeleton Feature Extraction (회전무관 3D Star Skeleton 특징 추출)

  • Chun, Sung-Kuk;Hong, Kwang-Jin;Jung, Kee-Chul
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.10
    • /
    • pp.836-850
    • /
    • 2009
  • Human posture recognition has attracted tremendous attention in ubiquitous environment, performing arts and robot control so that, recently, many researchers in pattern recognition and computer vision are working to make efficient posture recognition system. However the most of existing studies is very sensitive to human variations such as the rotation or the translation of body. This is why the feature, which is extracted from the feature extraction part as the first step of general posture recognition system, is influenced by these variations. To alleviate these human variations and improve the posture recognition result, this paper presents 3D Star Skeleton and Principle Component Analysis (PCA) based feature extraction methods in the multi-view environment. The proposed system use the 8 projection maps, a kind of depth map, as an input data. And the projection maps are extracted from the visual hull generation process. Though these data, the system constructs 3D Star Skeleton and extracts the rotation invariant feature using PCA. In experimental result, we extract the feature from the 3D Star Skeleton and recognize the human posture using the feature. Finally we prove that the proposed method is robust to human variations.

Estimating Human Size in 2D Image for Improvement of Detection Speed in Indoor Environments (실내 환경에서 검출 속도 개선을 위한 2D 영상에서의 사람 크기 예측)

  • Gil, Jong In;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.21 no.2
    • /
    • pp.252-260
    • /
    • 2016
  • The performance of human detection system is affected by camera location and view angle. In 2D image acquired from such camera settings, humans are displayed in different sizes. Detecting all the humans with diverse sizes poses a difficulty in realizing a real-time system. However, if the size of a human in an image can be predicted, the processing time of human detection would be greatly reduced. In this paper, we propose a method that estimates human size by constructing an indoor scene in 3D space. Since the human has constant size everywhere in 3D space, it is possible to estimate accurate human size in 2D image by projecting 3D human into the image space. Experimental results validate that a human size can be predicted from the proposed method and that machine-learning based detection methods can yield the reduction of the processing time.

Hole-Filling Method for Depth-Image-Based Rendering for which Modified-Patch Matching is Used (개선된 패치 매칭을 이용한 깊이 영상 기반 렌더링의 홀 채움 방법)

  • Cho, Jea-Hyung;Song, Wonseok;Choi, Hyuk
    • Journal of KIISE
    • /
    • v.44 no.2
    • /
    • pp.186-194
    • /
    • 2017
  • Depth-image-based rendering is a technique that can be applied in a variety of 3D-display systems. It generates the images that have been captured from virtual viewpoints by using a depth map. However, disoccluded hole-filling problems remain a challenging issue, as a newly exposed area appears in the virtual view. Image inpainting is a popular approach for the filling of the hole region. This paper presents a robust hole-filling method that reduces the error and generates a high quality-virtual view. First, the adaptive-patch size is decided using the color and depth information. Also, a partial filling method for which the patch similarity is used is proposed. These efforts reduce the error occurrence and the propagation. The experiment results show that the proposed method synthesizes the virtual view with a higher visual comfort compared with the existing methods.

Efficient and Robust Correspondence Detection between Unbalanced Stereo Images

  • Kim, Yong-Ho;Kim, Jong-Su;Lee, Sangkeun;Choi, Jong-Soo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.3
    • /
    • pp.161-170
    • /
    • 2012
  • This paper presents an efficient and robust approach for determining the correspondence between unbalanced stereo images. The disparity vectors were used instead of feature points, such as corners, to calculate a correspondence relationship. For a faster and optimal estimation, the vectors were classified into several regions, and the homography of each region was calculated using the RANSAC algorithm. The correspondence image was calculated from the images transformed by each homography. Although it provided good results under normal conditions, it was difficult to obtain reliable results in an unbalanced stereo pair. Therefore, a balancing method is also proposed to minimize the unbalance effects using the histogram specification and structural similarity index. The experimental results showed that the proposed approach outperformed the baseline algorithms with respect to the speed and peak-signal-to-noise ratio. This work can be applied to practical fields including 3D depth map acquisition, fast stereo coding, 2D-to-3D conversion, etc.

  • PDF

Analysis of Local Correlation between Shear Wave Velocity and Geo-layer in Korea (국내 지역성을 고려한 전단파속도와 대표지층의 상관관계 분석)

  • Kim, Han-Saem;Choi, Seung-Ho;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.687-698
    • /
    • 2010
  • Borehole drilled depend on the point is bound to be limited to obtain the 2-D or 3-D layer information for entire targer area. On the other hand, SASW and MASW provide the sectional form of layer information through the shear wave velocity($V_s$). Therefore the useful information of the target area can be derived from SASW, MASW and borehole data. In this research, the correlation reflected locality and nationwide between sectional geo-layer and $V_s$ was investigated and analyzed. The target areas are westside of Pyeongtaek and Incheon. The shear wave velocity($V_s$) obtained from SASW, MASW and borehole data conducted within the scope of crossline for survey was utilized in each region. In the 2D distribution of $V_s$ from SASW, MASW, $V_s$ tend to continually increase deeper and deeper. By the target area, the depth of each representative geo-layer was nested on the sectional distribution map of $V_s$ to suggest the range of $V_s$ in accordance of strata by using borehole data. The 2D sectional geo-layer distribution map is presented based on the range of $V_s$. In addition the correlation between measured and calculated $V_s$ according to the empirical equation was analyzed.

  • PDF

Depth Map Using New Single Lens Stereo (단안렌즈 스테레오를 이용한 깊이 지도)

  • Changwun Ku;Junghee Jeon;Kim, Choongwon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.5
    • /
    • pp.1157-1163
    • /
    • 2000
  • In this paper, we present a novel and practical stereo vision system that uses only one camera and four mirrors placed in front of the camera. The equivalent of a stereo pair of images are formed as left and right halves of a single CCD image by using four mirrors placed in front of the ten of a CCD camera. An object arbitrary point in 3D space is transformed into two virtual points by the four mirrors. As in the conventional stereo system, the displacement between the two conjugate image points of the two virtual points is directly related to the depth of the object point. This system has the following advantages over traditional two camera stereo that identical system parameters, easy calibration and easy acquisition of stereo data.

  • PDF