• Title/Summary/Keyword: 3d a simulator

Search Result 595, Processing Time 0.036 seconds

Development of an Evaluation Method for a Driver's Cognitive Workload Using ECG Signal (ECG 기반의 운전자별 인지 부하 평가 방법 개발)

  • Hong, Wongi;Lee, Wonsup;Jung, Kihyo;Lee, Baekhee;Park, Jangwoon;Park, Suwan;Park, Yunsuk;Son, Joonwoo;Park, Seikwon;You, Heecheon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.40 no.3
    • /
    • pp.325-332
    • /
    • 2014
  • High cognitive workload decreases a driver's ability of judgement and response in traffic situation and could result in a traffic accident. Electrocardiography (ECG) has been used for evaluation of drivers' cognitive workload; however, individual differences in ECG response corresponding to cognitive workload have not been fully considered. The present study developed an evaluation method of individual driver's cognitive workload based on ECG data, and evaluated its usefulness through an experiment in a driving simulator. The evaluation method developed by the present study determined the optimal ECG evaluation condition for individual participant by analysis of area under the receiver operating characteristic curve (AUC) for various conditions (total number of conditions = 144) in terms of four aspects (ECG measure, window span, update rate, and workload level). AUC analysis on the various conditions showed that the optimal ECG evaluation condition for each participant was significantly different. In addition, the optimal ECG evaluation condition could accurately detect changes in cognitive workload for 47% of the total participants (n = 15). The evaluation method proposed in the present study can be utilized in the evaluation of individual driver's cognitive workload for an intelligent vehicle.

System Development and IC Implementation of High-quality and High-performance Image Downscaler Using 2-D Phase-correction Digital Filters (2차원 위상 교정 디지털 필터를 이용한 고성능/고화질의 영상 축소기 시스템 개발 및 IC 구현)

  • 강봉순;이영호;이봉근
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.3
    • /
    • pp.93-101
    • /
    • 2001
  • In this paper, we propose an image downscaler used in multimedia video applications, such as DTV, TV-PIP, PC-video, camcorder, videophone and so on. The proposed image downscaler provides a scaled image of high-quality and high-performance. This paper will explain the scaling theory using two-dimensional digital filters. It is the method that removes an aliasing noise and decreases the hardware complexity, compared with Pixel-drop and Upsamling. Also, this paper will prove it improves scaling precisians and decreases the loss of data, compared with the Scaler32, the Bt829 of Brooktree, and the SAA7114H of Philips. The proposed downscaler consists of the following four blocks: line memory, vertical scaler, horizontal scaler, and FIFO memory. In order to reduce the hardware complexity, the using digital filters are implemented by the multiplexer-adder type scheme and their all the coefficients can be simply implemented by using shifters and adders. It also decreases the loss of high frequency data because it provides the wider BW of 6MHz as adding the compensation filter. The proposed downscaler is modeled by using the Verilog-HDL and the model is verified by using the Cadence simulator. After the verification is done, the model is synthesized into gates by using the Synopsys. The synthesized downscaler is Placed and routed by the Mentor with the IDEC-C632 0.65${\mu}{\textrm}{m}$ library for further IC implementation. The IC master is fixed in size by 4,500${\mu}{\textrm}{m}$$\times$4,500${\mu}{\textrm}{m}$. The active layout size of the proposed downscaler is 2,528${\mu}{\textrm}{m}$$\times$3,237${\mu}{\textrm}{m}$.

  • PDF

Phosphorus Cycle in a Deep Reservoir in Asian Monsoon Are3 (Lake Soyang, Korea) and the Modeling with a 2-D Hydrodynamic Water Quality Model [CE-QUAL-W2] (아시아 몬순지역의 대형댐(소양호)에서의 인순환과 2차원모델의 적용)

  • Kim, Yoon-Hee;Kim, Bom-Chul
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.2 s.107
    • /
    • pp.205-212
    • /
    • 2004
  • Phosphorus cycle was studied in a deep stratified reservoir in summer monsoon area (Lake Soyang, Korea) by surveying phosphorus input from the watershed and the movement of phosphorus within the reservoir. And the spatial and temporal distribution of phosphorus was modeled with a 2-dimensional water quality model (CE-QUAL-W2), Phosphorus loading was calculated by measuring TP in the main inflowing river (the Soyang River) accounting for 90% of watershed discharge. TP of the Soyang River showed a large daily variation with the flow rate. High phosphorus loading occurred during a few episodic storm runoff laden with suspended sediments and phosphorus. Because storm runoff water on rainy days have lower temperature, it plunges into a depth of same temperature (usually below 20m depth), forming an intermediate turbidity layer with a thickness of 20 ${\sim}$ 30 m. Because of stable thermal stratification in summer the intermediate layer water of high phosphorus content was discharged from the dam through a mid-depth outlet without diffusing into epilimnion. The movement of runoff water within the reservoir, and the subsequent distribution of phosphorus were well simulated by the water quality model showing a good accuracy. The major parameter for the calibration of phosphorus cycle was a settling velocity of detritus, which was calibrated to be 0.75 m ${\cdot}$ $day^{-1}$. It is concluded that the model can be a good simulator of limnological phenomena in reservoirs of summer monsoon area.

Technical Review of Target Volume Delineation on the Posterior Fossa Tumor : An Optimal Head and Neck Position (후두와 종양의 방사선치료 시 표적용적의 결정을 위한 적절한 치료자세 연구)

  • Yoon Sang Min;Lee Sang-wook;Ahn Seung Do;Kim Jong Hoon;YE Byong Yong;Ra Young Shin;Kim Tae Hyung;Choi Eun Kyung
    • Radiation Oncology Journal
    • /
    • v.21 no.1
    • /
    • pp.94-99
    • /
    • 2003
  • Purpose : To explore a 3D conformal radiotherapy technique for a posterior fossa boost, and the potential advantages of a prone position for such radiotherapy. Materials and Methods :A CT simulator and 3D conformal radiotherapy Planning system was used for the posterior fossa boost treatment on a 13-year-old medulloblastoma patient. He was placed In the prone position and Immobilized with an aquaplast mask and immobilization mold. CT scans were obtained of the brain from the top of the skull to the lower neck, with IV contrast enhancement. The target volume and normal structures were delineated on each slice, with treatment planning peformed using non-coplanar conformal beams. Results : The CT scans, and treatment In the prone position, were peformed successfully. In the prone position, the definition of the target volume was made easier due to the well enhanced tentorium, In audition, the posterior fossa was located anteriorly, and with the greater choice of beam arrangements, more accurate treatment planning was possible as the primary beams were not obstructed by the treatment table. Conclusion : .A posterior fossa boost, in the prone position, Is feasible in cooperating patients, but further evaluation is needed to define the optimal and most comfortable treatment positions.

The efficacy of continuous positive airway pressure (CPAP) for patient with left breast cancer (좌측 유방암 방사선치료에서 CPAP(Continuous Positive Airway Pressure)의 유용성 평가)

  • Jung, Il Hun;Ha, Jin Sook;Chang, Won Suk;Jeon, Mi Jin;Kim, Sei Joon;Jung, Jin Wook;Park, Byul Nim;Shin, Dong Bong;Lee, Ik Jae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.2
    • /
    • pp.43-49
    • /
    • 2019
  • Purpose: This study examined changes in the position of the heat and lungs depending on the patient's breathing method during left breast cancer radiotherapy and used treatment plans to compare the resulting radiation dose. Materials and methods: The participants consisted of 10 patients with left breast cancer. A CT simulator(SIMENS SOMATOM AS, Germany) was used to obtain images when using three different breathing methods: free breathing(FB), deep inspiration breath hold(DIBH with Abches, DIBH), inspiration breath hold(IBH with CPAP, CPAP). A Ray Station(5.0.2.35, Sweden) was used for treatment planning, the treatment method was volumetric modulated arc therapy (VMAT) with one partial arc of the same angle, and the prescribed dose to the planning target volume (PTV) was a total dose of 50Gy(2Gy/day). In treatment plan analysis, the 95% dose (D95) to the PTV, the conformity index(CI), and the homogeneity index (HI) were compared. The lungs, heart, and left anterior descending artery (LAD) were selected as the organs at risk(OARs). Results: The mean volume of the ipsilateral lung for FB, DIBH, and CPAP was 1245.58±301.31㎤, 1790.09±362.43 ㎤, 1775.44±476.71 ㎤. The mean D95 for the PTV was 46.67±1.89Gy, 46.85±1.72Gy, 46.97±23.4Gy, and the mean CI and HI were 0.95±0.02, 0.96±0.02, 0.95±0.02 and 0.91±0.01, 0.90±0.01, 0.92±0.02. The V20 of Whole Lung was 10.74±4.50%, 8.29±3.14%, 9.12±3.29% and The V20 of the ipsilateral lung was 20.45±8.65%, 17.18±7.04%, 18.85±7.85%, the Dmean of the heart was 7.82±1.27Gy, 6.10±1.27Gy, 5.67±1.56Gy, and the Dmax of the LAD was 20.41±7.56Gy, 14.88±3.57Gy, 14.96±2.81Gy. The distance from the thoracic wall to the LAD was measured to be 11.33±4.70mm, 22.40±6.01mm, 20.14±6.23mm. Conclusion: During left breast cancer radiotherapy, the lung volume was 46.24% larger for DIBH than for FB, and 43.11% larger for CPAP than FB. The larger lung volume increases the distance between the thoracic wall and the heart. In this way, the LAD, which is one of the nearby OARs, can be more effectively protected while still satisfying the treatment plan. The lung volume was largest for DIBH, and the distance between the LAD and thoracic wall was also the greatest. However, when performing treatment with DIBH, the intra-fraction error cannot be ignored. Moreover, communication between the patient and the radiotherapist is also an important factor in DIBH treatment. When communication is problematic, or if the patient has difficulty holding their breath, we believe that CPAP could be used as an alternative to DIBH. In order to verify the clinical efficacy of CPAP, it will be necessary to perform long-term follow-up of a greater number of patients.

Evaluation of Metal Volume and Proton Dose Distribution Using MVCT for Head and Neck Proton Treatment Plan (두경부 양성자 치료계획 시 MVCT를 이용한 Metal Volume 평가 및 양성자 선량분포 평가)

  • Seo, Sung Gook;Kwon, Dong Yeol;Park, Se Joon;Park, Yong Chul;Choi, Byung Ki
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.1
    • /
    • pp.25-32
    • /
    • 2019
  • Purpose: The size, shape, and volume of prosthetic appliance depend on the metal artifacts resulting from dental implant during head and neck treatment with radiation. This reduced the accuracy of contouring targets and surrounding normal tissues in radiation treatment plan. Therefore, the purpose of this study is to obtain the images of metal representing the size of tooth through MVCT, SMART-MAR CT and KVCT, evaluate the volumes, apply them into the proton therapy plan, and analyze the difference of dose distribution. Materials and Methods : Metal A ($0.5{\times}0.5{\times}0.5cm$), Metal B ($1{\times}1{\times}1cm$), and Metal C ($1{\times}2{\times}1cm$) similar in size to inlay, crown, and bridge taking the treatments used at the dentist's into account were made with Cerrobend ($9.64g/cm^3$). Metal was placed into the In House Head & Neck Phantom and by using CT Simulator (Discovery CT 590RT, GE, USA) the images of KVCT and SMART-MAR were obtained with slice thickness 1.25 mm. The images of MVCT were obtained in the same way with $RADIXACT^{(R)}$ Series (Accuracy $Precision^{(R)}$, USA). The images of metal obtained through MVCT, SMART-MAR CT, and KVCT were compared in both size of axis X, Y, and Z and volume based on the Autocontour Thresholds Raw Values from the computerized treatment planning equipment Pinnacle (Ver 9.10, Philips, Palo Alto, USA). The proton treatment plan (Ray station 5.1, RaySearch, USA) was set by fusing the contour of metal B ($1{\times}1{\times}1cm$) obtained from the above experiment by each CT into KVCT in order to compare the difference of dose distribution. Result: Referencing the actual sizes, it was appeared: Metal A (MVCT: 1.0 times, SMART-MAR CT: 1.84 times, and KVCT: 1.92 times), Metal B (MVCT: 1.02 times, SMART-MAR CT: 1.47 times, and KVCT: 1.82 times), and Metal C (MVCT: 1.0 times, SMART-MAR CT: 1.46 times, and KVCT: 1.66 times). MVCT was measured most similarly to the actual metal volume. As a result of measurement by applying the volume of metal B into proton treatment plan, the dose of $D_{99%}$ volume was measured as: MVCT: 3094 CcGE, SMART-MAR CT: 2902 CcGE, and KVCT: 2880 CcGE, against the reference 3082 CcGE Conclusion: Overall volume and axes X and Z were most identical to the actual sizes in MVCT and axis Y, which is in the superior-Inferior direction, was regular in length without differences in CT. The best dose distribution was shown in MVCT having similar size, shape, and volume of metal when treating head and neck protons. Thus it is thought that it would be very useful if the contour of prosthetic appliance using MVCT is applied into KVCT for proton treatment plan.

Comparison of CT based-CTV plan and CT based-ICRU38 plan in brachytherapy planning of uterine cervix cancer (자궁경부암 강내조사 시 CT를 이용한 CTV에 근거한 치료계획과 ICRU 38에 근거할 치료계획의 비교)

  • Shim JinSup;Jo JungKun;Si ChangKeun;Lee KiHo;Lee DuHyun;Choi KyeSuk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.16 no.2
    • /
    • pp.9-17
    • /
    • 2004
  • Purpose : Although Improve of CT, MRI Radio-diagnosis and Radiation Therapy Planing, but we still use ICRU38 Planning system(2D film-based) broadly. 3-Dimensional ICR plan(CT image based) is not only offer tumor and normal tissue dose but also support DVH information. On this study, we plan irradiation-goal dose on CTV(CTV plan) and irradiation-goal dose on ICRU 38 point(ICRU38 plan) by use CT image. And compare with tumor-dose, rectal-dose, bladder-dose on both planning, and analysis DVH Method and Material : Sample 11 patients who treated by Ir-192 HDR. After 40Gy external radiation therapy, ICR plan established. All the patients carry out CT-image scanned by CT-simulator. And we use PLATO(Nucletron) v.14.2 planing system. We draw CTV, rectum, bladder on the CT image. And establish plan irradiation-$100\%$ dose on CTV(CTV plan) and irradiation-$100\%$ dose on A-point(ICRU38 plan) Result : CTV volume($average{\pm}SD$) is $21.8{\pm}26.6cm^3$, rectum volume($average{\pm}SD$) is $60.9{\pm}25.0cm^3$, bladder volume($average{\pm}SD$) is $116.1{\pm}40.1cm^3$ sampled 11 patients. The volume including $100\%$ dose is $126.7{\pm}18.9cm^3$ on ICRU plan and $98.2{\pm}74.5cm^3$ on CTV plan. On ICRU planning, the other one's $22.0cm^3$ CTV volume who residual tumor size excess 4cm is not including $100\%$ isodose. 8 patient's $12.9{\pm}5.9cm^3$ tumor volume who residual tumor size belows 4cm irradiated $100\%$ dose. Bladder dose(recommended by ICRU 38) is $90.1{\pm}21.3\%$ on ICRU plan, $68.7{\pm}26.6\%$ on CTV plan, and rectal dose is $86.4{\pm}18.3\%,\;76.9{\pm}15.6\%$. Bladder and Rectum maximum dose is $137.2{\pm}50.1\%,\;101.1{\pm}41.8\%$ on ICRU plan, $107.6{\pm}47.9\%,\;86.9{\pm}30.8\%$ on CTV plan. Therefore CTV plan more less normal issue-irradiated dose than ICRU plan. But one patient case who residual tumor size excess 4cm, Normal tissue dose more higher than critical dose remarkably on CTV plan. $80\%$over-Irradiated rectal dose(V80rec) is $1.8{\pm}2.4cm^3$ on ICRU plan, $0.7{\pm}1.0cm^3$ on CTV plan. $80\%$over-Irradiated bladder dose(V80bla) is $12.2{\pm}8.9cm^3$ on ICRU plan, $3.5{\pm}4.1cm^3$ on CTV plan. Likewise, CTV plan more less irradiated normal tissue than ICRU38 plan. Conclusion : Although, prove effect and stability about previous ICRU plan, if we use CTV plan by CT image, we will reduce normal tissue dose and irradiated goal-dose at residual tumor on small residual tumor case. But bigger residual tumor case, we need more research about effective 3D-planning.

  • PDF

A Simulation Study on the Analysis of Optimal Gas Storage System of the Depleted Gas Reservoir (고갈가스전에의 적정 가스저장시스템 분석을 위한 시뮬레이션 연구)

  • Lee, Youngsoo;Choi, Haewon;Lee, Jeonghwan;Han, Jeongmin;Ryou, Sangsoo;Roh, Jeongyong;Sung, Wonmo
    • Korean Chemical Engineering Research
    • /
    • v.45 no.5
    • /
    • pp.515-522
    • /
    • 2007
  • In this study we have attempted to evaluate the technical feasibility of "BB-HY", which is depleted gas reservoir as a gas storage field, using the commercial compositional simulator "ECLIPSE 300". The "BB-HY" reservoir has an initial gas in place of 143 BCF which is relatively small, and its porosity and permeability are 19.5% and 50 md, respectively. For "BB-HY" gas reservoir, we have performed a feasibility analysis by investigating the cushion gas (or working gas), converting time to gas storage field, operation cycle, number of wells and the possible application of horizontal borehole as well. From the simulation results, it was found that the amount of cushion gas in "BB-HY" reservoir is required at least 50% of IGIP in order to operate stably as gas storage field. When one produces gas for longer time and hence the remaining gas in reservoir is less than optimal cushion gas, no technical problem was occurred as long as additional cushion gas is injected up to the optimal cushion gas. In the case of changing the operation cycle into producing gas for three months during winter season from producing five months, the result shows that either the cushion gas should be greater than 60% or the more number of wells should be drilled. Meanwhile, from the results of sensitivity analysis for the number of wells, in cases of operating six or eight vertical wells, the stable reproduction of the injected gas can not be possible in "BB-HY" gas reservoir since the remaining gas in reservoir is increased. Therefore, in "BB-HY" reservoir, at least ten vertical wells should be drilled for the stable operation of gas. This time, when three horizontal wells are additionally drilled including the existing two vertical wells, it was found that the operation of injection and reproduction of gas is relatively stable in "BB-HY" gas reservoir.

A Study on Prospective Plan Comparison using DVH-index in Tomotherapy Planning (토모 테라피 치료 시 선량 체적 히스토그램 표지자를 이용한 치료계획 비교에 관한 연구)

  • Kim, Joo-Ho;Cho, Jeong-Hee;Lee, Sang-Kyoo;Jeon, Byeong-Chul;Yoon, Jong-Won;Kim, Dong-Wook
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.19 no.2
    • /
    • pp.113-122
    • /
    • 2007
  • Purpose: We proposed the method using dose-volume Histogram index to compare prospective plan trials in tomotherapy planning optimization. Materials and Methods: For 3 patients in cranial region, thorax and abdominal region, we acquired computed tomography images with PQ 5000 in each case. Then we delineated target structure and normal organ contour with pinnacle Ver 7.6c, after transferred each data to tomotherapy planning system (hi-art system Ver 2.0), we optimized 3 plan trials in each case that used differ from beam width, pitch, importance. We analyzed 3 plan trials in each region with isodose distribution, dose-volume histogram and dose statistics. Also we verified 3 plan trials with specialized DVH-indexes that is dose homogeneity index in target organ, conformity index around target structure and dose gradient index in non-target structures. Results: We compared with the similarity of results that the one is decide the best plan trial using isodose distribution, dose volume histogram and dose statistics, and the another is using DVH-indexes. They all decided the same plan trial to better result in each case. Conclusion: In some of case, it was appeared a little difference of results that used to DVH-index for comparison of plan trial in tomotherapy by special goal in it. But because DVH-index represented both dose distribution in target structure and high dose risk about normal tissue, it will be reasonable method for comparison of many plan trials before the tomotherapy treatments.

  • PDF

Comparison of CT based-CTV plan and CT based-ICRU38 plan in Brachytherapy Planning of Uterine Cervix Cancer (자궁경부암 강내조사 시 CT를 이용한 CTV에 근거한 치료계획과 ICRU 38에 근거한 치료계획의 비교)

  • Cho, Jung-Ken;Han, Tae-Jong
    • Journal of Radiation Protection and Research
    • /
    • v.32 no.3
    • /
    • pp.105-110
    • /
    • 2007
  • Purpose : In spite of recent remarkable improvement of diagnostic imaging modalities such as CT, MRI, and PET and radiation therapy planing systems, ICR plan of uterine cervix cancer, based on recommendation of ICRU38(2D film-based) such as Point A, is still used widely. A 3-dimensional ICR plan based on CT image provides dose-volume histogram(DVH) information of the tumor and normal tissue. In this study, we compared tumor-dose, rectal-dose and bladder-dose through an analysis of DVH between CTV plan and ICRU38 plan based on CT image. Method and Material : We analyzed 11 patients with a cervix cancer who received the ICR of Ir-192 HDR. After 40Gy of external beam radiation therapy, ICR plan was established using PLATO(Nucletron) v.14.2 planing system. CT scan was done to all the patients using CT-simulator(Ultra Z, Philips). We contoured CTV, rectum and bladder on the CT image and established CTV plan which delivers the 100% dose to CTV and ICRU plan which delivers the 100% dose to the point A. Result : The volume$(average{\pm}SD)$ of CTV, rectum and bladder in all of 11 patients is $21.8{\pm}6.6cm^3,\;60.9{\pm}25.0cm^3,\;111.6{\pm}40.1cm^3$ respectively. The volume covered by 100% isodose curve is $126.7{\pm}18.9cm^3$ in ICRU plan and $98.2{\pm}74.5cm^3$ in CTV plan(p=0.0001), respectively. In (On) ICRU planning, $22.0cm^3$ of CTV volume was not covered by 100% isodose curve in one patient whose residual tumor size is greater than 4cm, while more than 100% dose was irradiated unnecessarily to the normal organ of $62.2{\pm}4.8cm^3$ other than the tumor in the remaining 10 patients with a residual tumor less than 4cm in size. Bladder dose recommended by ICRU 38 was $90.1{\pm}21.3%$ and $68.7{\pm}26.6%$ in ICRU plan and in CTV plan respectively(p=0.001) while rectal dose recommended by ICRU 38 was $86.4{\pm}18.3%$ and $76.9{\pm}15.6%$ in ICRU plan and in CTV plan, respectively(p=0.08). Bladder and rectum maximum dose was $137.2{\pm}50.1%,\;101.1{\pm}41.8%$ in ICRU plan and $107.6{\pm}47.9%,\;86.9{\pm}30.8%$ in CTV plan, respectively. Therefore, the radiation dose to normal organ was lower in CTV plan than in ICRU plan. But the normal tissue dose was remarkably higher than a recommended dose in CTV plan in one patient whose residual tumor size was greater than 4cm. The volume of rectum receiving more than 80% isodose (V80rec) was $1.8{\pm}2.4cm^3$ in ICRU plan and $0.7{\pm}1.0cm^3$ in CTV plan(p=0.02). The volume of bladder receiving more than 80% isodose(V80bla) was $12.2{\pm}8.9cm^3$ in ICRU plan and $3.5{\pm}4.1cm^3$ in CTV plan(p=0.005). According to these parameters, CTV plan could also save more normal tissue compared to ICRU38 plan. Conclusion : An unnecessary excessive radiation dose is irradiated to normal tissues within 100% isodose area in the traditional ICRU plan in case of a small size of cervix cancer, but if we use CTV plan based on CT image, the normal tissue dose could be reduced remarkably without a compromise of tumor dose. However, in a large tumor case, we need more research on an effective 3D-planing to reduce the normal tissue dose.