• Title/Summary/Keyword: 3d Ray Tracing

Search Result 118, Processing Time 0.025 seconds

A Study on Replacing Method Global Illumination Using Ambient Occlusion (Ambient Occlusion을 이용한 Global Illumination 대체기법 연구)

  • Park, Jae-Wook;Kim, Yun-Jung
    • Cartoon and Animation Studies
    • /
    • s.36
    • /
    • pp.493-510
    • /
    • 2014
  • From game consoles to TV and Hollywood films, 3D rendering technology is involved in various fields. Up until the late 90s, the computer image rendering method was rasterization that mainly used Phong Shading, and up until recently it was the go-to method for movies and film animation. In the 21st century, the quality provided by Ray Tracing and the development of Global Illumination was much more realistic and thus became popularized. However, despite its growing use in architectural rendering to the markets, Global Illumination in film animation and movies was limited due to its long render time. So, in this thesis, if one were to take the concept from each rendering method and consider it from a mathematical perspective, one could adapt the Ambient Occlusion's equation to the illumination loop equation used in rasterization. This algorithm modification has the capability to reflect the lighting of a diverse array of colors, like in Global Illumination, with a fast render time, as in rasterization, and the example RenderMan Shader is based upon this new algorithm. In conclusion, with Global Illumination's naturalistic lighting and rasterization's rendering speed, the combination of the best points of each is a new method with a short rendering time while producing good quality. I hope animations and films can benefit from this algorithm by the reduction of budget with an overall better quality output in VFX production.

Optimal Design of Electric Field Driven Liquid Crystal Fresnel Lens Using Taguchi's Method (다구찌 실험계획법을 이용한 액정 전계 프레넬 렌즈의 최적 설계)

  • Kim, Bong-Sik;Kim, Jong-Woon;Park, Woo-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.3
    • /
    • pp.218-223
    • /
    • 2012
  • A rigorous electro-optical simulation and ray tracing for an electric field driven liquid crystal Fresnel lens was proposed to obtain design parameters of the electrode pattern of the Fresnel lens. The optimal design was carried out using Taguchi's experimental method for 17.1"($368{\times}229.5$ mm) wide LCD panels with 9 views. For the calculation of the distribution of liquid crystal molecules and the optical transmission of the panel, finite difference method and extended Jones matrix method were used to deal effectively with highly nonlinear and complicated motional equations of the liquid crystal molecules and to obtain the oblique transmission characteristics of the LCD panel. As simulation results, the optimal lengths of the 3 electrodes of the Fresnel lens are 4.0 ${\mu}m$, 30 ${\mu}m$ and 83 ${\mu}m$, respectively, and the locations of the second and third electrodes are 32.9-33.0 ${\mu}m$ and 45.9-46.0 ${\mu}m$, respectively. The optimal applied voltage of the 3 electrodes are found to be 5.75 V, 7.80 V and 11.9 V, respectively.

High-Quality Global Illumination Production Using Programmable Graphics Hardware (프로그래밍 가능한 그래픽스 하드웨어를 사용한 고품질 전역 조영 생성)

  • Cha, Deuk-Hyun;Chang, Byung-Joon;Ihm, In-Sung
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.414-419
    • /
    • 2008
  • 3D rendering is a critical process for a movie production, advertisement, interior simulation, medical and many other fields. Recently, several effective rendering methods have been developed for the photo-realistic image generation. With a rapid performance enhancement of graphics hardware, physically based 3D rendering algorithm can now often be approximated in real-time games. However, the high quality of global illumination, required for the image generation in the 3D animation production community is a still very expensive process. In this paper, we propose a new rendering method to create photo-realistic global illumination effect efficiently by harnessing the high power of the recent GPUs. Final gathering routines in our global illumination module are accelerated by programmable graphics hardware. We also simulate physically based light transport on a ray tracing based rendering algorithm with photon mapping effectively.

  • PDF

Geometric Modeling and Data Simulation of an Airborne LIDAR System (항공라이다시스템의 기하모델링 및 데이터 시뮬레이션)

  • Kim, Seong-Joon;Min, Seong-Hong;Lee, Im-Pyeong;Choi, Kyung-Ah
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.3
    • /
    • pp.311-320
    • /
    • 2008
  • A LIDAR can rapidly generate 3D points by densely sampling the surfaces of targets using laser pulses, which has been efficiently utilized to reconstruct 3D models of the targets automatically. Due to this advantage, LIDARs are increasingly applied to the fields of Defense and Security, for examples, being employed to intelligently guided missiles and manned/unmanned reconnaissance planes. For the prior verification of the LIDAR applicability, this study aims at generating simulated LIDAR data. Here, we derived the sensor equation by modelling the geometric relationships between the LIDAR sub-modules, such as GPS, IMU, LS and the systematic errors associated with them. Based on this equation, we developed a program to generate simulated data with the system parameters, the systematic errors, the flight trajectories and attitudes, and the reference terrain model given. This program had been applied to generating simulated LIDAR data for urban areas. By analyzing these simulated data, we verified the accuracy and usefulness of the simulation. The simulator developed in this study will provide economically various test data required for the development of application algorithms and contribute to the optimal establishment of the flight and system parameters.

Capacity Characteristics of the Indoor Propagation Channel for MIMO System at 5 GHz (5GHz 대역 MIMO 시스템에 대한 실내 전파 채널용량 특성)

  • Ryu, Seong-Hyun;Kim, Jung-Ha;Kwon, Se-Woong;Yoon, Young-Joong
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.43-46
    • /
    • 2003
  • This paper presents capacity characteristics of the indoor LOS(Line-Of-Sight) propagation channel for MIMO system at 5GHz. The distance between antenna elements, their moving path, and number of transmitting and receiving antennas can be determined by wanted eigen-vlaue, and channel capacity of the MIMO communication channel using only reliable simulation without measurements. The simulation uses 3D Ray tracing and patch scattering model to which electromagnetic material constants are applied. As distance between antenna elements increases, distribution of the eigen-value show a tendency to decrease, but channel capacity increases in LOS environment. However, despite of short distance between antenna elements, large value of channel capacity is obtained in positions which have high AS. When the position of receiver antennas are shifted, channel capacity hardly changed, and as number of antenna elements increases, channel capacity also increases regularly.

  • PDF

New parametric approach to decomposition of disk averaged spectra of potential extra terrestrial planet I. Surface type ratio of the Earth

  • Ryu, Dong-Ok;Seong, Se-Hyun;Yu, Jin-Hee;Oh, Eun-Song;Ahn, Ki-Beom;Hong, Jin-Suk;Lee, Jae-Min;Kim, Suk-Whan
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.34.2-34.2
    • /
    • 2010
  • We built 7 potential extra-terrestrial planets including the full 3D Earth model with various surface types and 6 planet models, each with uniform surface characteristics. The surface types include ice, tundra, forest, grass, ground and ocean. We then imported these 7 planets into integrated ray tracing(IRT) model to compute their disk averaged spectra and to understand the spectral behavior depending on the geometrical view, illumination phase and seasonal change. The IRT computation show that the 6 planets with uniform surfaces exhibit clear spectral differences from that of the Earth. We then built a phase and seasonal DAS database for the 6 uniform surface planets and used them for parametric spectral decomposition technique to derive the Earth DAS. This computation resulted in the first potential solution to the surface type ratio of the Earth compared to the measured earth surface type ratio. The computational details and the implications are discussed.

  • PDF

Goal-oriented multi-collision source algorithm for discrete ordinates transport calculation

  • Wang, Xinyu;Zhang, Bin;Chen, Yixue
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2625-2634
    • /
    • 2022
  • Discretization errors are extremely challenging conundrums of discrete ordinates calculations for radiation transport problems with void regions. In previous work, we have presented a multi-collision source method (MCS) to overcome discretization errors, but the efficiency needs to be improved. This paper proposes a goal-oriented algorithm for the MCS method to adaptively determine the partitioning of the geometry and dynamically change the angular quadrature in remaining iterations. The importance factor based on the adjoint transport calculation obtains the response function to get a problem-dependent, goal-oriented spatial decomposition. The difference in the scalar fluxes from one high-order quadrature set to a lower one provides the error estimation as a driving force behind the dynamic quadrature. The goal-oriented algorithm allows optimizing by using ray-tracing technology or high-order quadrature sets in the first few iterations and arranging the integration order of the remaining iterations from high to low. The algorithm has been implemented in the 3D transport code ARES and was tested on the Kobayashi benchmarks. The numerical results show a reduction in computation time on these problems for the same desired level of accuracy as compared to the standard ARES code, and it has clear advantages over the traditional MCS method in solving radiation transport problems with reflective boundary conditions.

Conversion Efficiency Enhancement of a-Si:H Thin-Film Solar Cell Using Periodic Patterned Substrate (주기적인 패턴 유리 기판을 사용한 비정질 실리콘 박막 태양전지의 효율 향상에 관한 연구)

  • Son, C.H.;Kim, K.M.;Kim, J.H.;Hong, J.;Kwon, G.C.
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.1
    • /
    • pp.55-61
    • /
    • 2012
  • We fabricated a-Si:H thin-film solar cell using the two-dimensional (2D) periodic patterned glass substrate. The use of a 3D periodic texture rather than a randomly texture at surface of TCO can result in higher short circuit current densities ($J_{sc}$). In order to analyze the optical effect of patterning glasses, ray-tracing simulations were performed. Also, p-i-n cells were deposited on patterned glasses as substrate by PECVD. UV-Vis spectroscopy, light I-V measurement were carried out for the optoelectronic characterization. The anti-reflective and light-trapping performance of patterning glass substrate was investigated by a comparison of experimental results with numerical simulations.

A Study on Mine Localization of Forward Looking Sonar Considering the Effect of Underwater Sound Refraction (수중 음파 굴절효과를 고려한 전방주시소나 기뢰 위치 추정기법 연구)

  • Sul, Hoseok;Oh, Raegeun;Yang, Wonjun;Yoon, Young Geul;Choi, Jee Woong;Han, Sangkyu;Kwon, Bumsoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.231-238
    • /
    • 2022
  • Mine detection has been mainly studied with images of the forward-looking sonar. Forward-looking sonar assumes the propagation path of the sound wave as a straight path, creating the surrounding images. This might lead to errors in the detection by ignoring the refraction of the sound wave. In this study, we propose a mine localization method that can robustly identify the location of mines in an underwater environment by considering the refraction of sound waves. We propose a method of estimating the elevation angle of arrival of the target echo signal in a single receiver, and estimate the mine location by applying the estimated elevation angle of arrival to ray tracing. As a result of simulation, the method proposed in this paper was more effective in estimating the mine localization than the existing method that assumed the propagation path as a straight line.

A Study on Indoor Propagation Modeling using Patch Scattering Model (패치산란모델을 이용한 실내 전파모델링에 관한 연구)

  • 석우찬;김진웅;석재호;임재우;윤영중
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.5
    • /
    • pp.772-772
    • /
    • 2001
  • In this paper, we proposed the image-based 3D ray-tracing indoor propagation model using patch scattering model which can calculate the scattering phenomenon of the indoor structures. A patch scattering model for modeling indoor structures defines a scattering phenomenon by using RCS(Radar Cross Section) about rectangular patch without complex calculation, for example generating image antennas about each indoor structures. RCS is simply defined as a ratio of scattering power to incident power, and we use bistatic PCS which is simplified numerically by Physical Optics. Also, a simple indoor compensation factor is defined as empirical constant from measured data instead of complex numerical expression because basic patch scattering model cannot include important multipath components, so we san use patch scattering model in indoor environment using indoor compensation factor.