• Title/Summary/Keyword: 3Dmesh

Search Result 2, Processing Time 0.015 seconds

Robust Watermarking Algorithm for 3D Mesh Models (3차원 메쉬 모델을 위한 강인한 워터마킹 기법)

  • 송한새;조남익;김종원
    • Journal of Broadcast Engineering
    • /
    • v.9 no.1
    • /
    • pp.64-73
    • /
    • 2004
  • A robust watermarking algorithm is proposed for 3D mesh models. Watermark is inserted into the 2D image which is extracted from the target 3D model. Each Pixel value of the extracted 2D image represents a distance from the predefined reference points to the face of the given 3D model. This extracted image is defined as “range image” in this paper. Watermark is embedded into the range image. Then, watermarked 3D mesh is obtained by modifying vertices using the watermarked range Image. In extraction procedure, the original model is needed. After registration between the original and the watermarked models, two range images are extracted from each 3D model. From these images. embedded watermark is extracted. Experimental results show that the proposed algorithm is robust against the attacks such as rotation, translation, uniform scaling, mesh simplification, AWGN and quantization of vertex coordinates.

Three-dimensional cone beam computed tomography analysis of temporomandibular joint response to the Twin-block functional appliance

  • Jiang, Yuan-yuan;Sun, Lian;Wang, Hua;Zhao, Chun-yang;Zhang, Wei-Bing
    • The korean journal of orthodontics
    • /
    • v.50 no.2
    • /
    • pp.86-97
    • /
    • 2020
  • Objective: To propose a three-dimensional (3D) method for evaluating temporomandibular joint (TMJ) changes during Twin-block treatment. Methods: Seventeen patients with Class II division 1 malocclusion treated using Twin-block and nine untreated patients with a similar malocclusion were included in this research. We collected their cone beam computed tomography (CBCT) data from before and 8 months after treatment. Segmentations were constructed using ITK-SNAP. Condylar volume and superficial area were measured using 3D Slicer. The 3D landmarks were identified on CBCT images by using Dolphin software to assess the condylar positional relationship. 3D models of the mandible and glenoid fossa of the patients were constructed and registered via voxel-based superimposition using 3D Slicer. Thereafter, skeletal changes could be visualized using 3DMeshMetric in any direction of the superimposition on a color-coded map. All the superimpositions were measured using the same scale on the distance color-coded map, in which red color represents overgrowth and blue color represents resorption. Results: Significant differences were observed in condylar volume, superficial area, and condylar position in both groups after 8 months. Compared with the control group (CG), the Twin-block group exhibited more obvious condyle-fossa modifications and joint positional changes. Moreover, on the color-coded map, more obvious condyle-fossa modifications could be observed in the posterior and superior directions in the Twin-block group than in the CG. Conclusions: We successfully established a 3D method for measuring and evaluating TMJ changes caused by Twin-block treatment. The treatment produced a larger condylar size and caused condylar positional changes.