• Title/Summary/Keyword: 3DA/V

Search Result 323, Processing Time 0.023 seconds

Purification, Characterization, and Partial Primary Sequence of a Major-Maltotriose-producing $\alpha$-Amylase, ScAmy43, from Sclerotinia sclerotiorum

  • Ben Abdelmalek-Khedher, Imen;Urdad, Maria Camino;Limam, Ferid;Schmitter, Jean Marie;Marzouki, M. Nejib;Bressollier, Philippe
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.9
    • /
    • pp.1555-1563
    • /
    • 2008
  • A novel $\alpha$-amylase ($\alpha$-1,4-$\alpha$-D-glucan glucanohydrolase, E.C. 3.2.1.1), ScAmy43, was found in the culture medium of the phytopathogenic fungus Sclerotinia sclerotiorum grown on oats flour. Purified to homogeneity, ScAmy43 appeared as a 43 kDa monomeric enzyme, as estimated by SDS-PAGE and Superdex 75 gel filtration. The MALDI peptide mass fingerprint of ScAmy43 tryptic digest as well as internal sequence analyses indicate that the enzyme has an original primary structure when compared with other fungal a-amylases. However, the sequence of the 12 N-terminal residues is homologous with those of Aspergillus awamori and Aspergillus kawachii amylases, suggesting that the new enzyme belongs to the same GH13 glycosyl hydrolase family. Assayed with soluble starch as substrate, this enzyme displayed optimal activity at pH 4 and $55^{\circ}C$ with an apparent $K_m$ value of 1.66 mg/ml and $V_{max}$ of 0.1${\mu}mol$glucose $min^{-1}$ $ml^{-1}$. ScAmy43 activity was strongly inhibited by $Cu^{2+}$, $Mn^{2+}$, and $Ba^{2+}$, moderately by $Fe^{2+}$, and was only weakly affected by $Ca^{2+}$ addition. However, since EDTA and EGTA did not inhibit ScAmy43 activity, this enzyme is probably not a metalloprotein. DTT and $\beta$-mercaptoethanol strongly increased the enzyme activity. Starting with soluble starch as substrate, the end products were mainly maltotriose, suggesting for this enzyme an endo action.

Microarray Analysis of Gene Expression in Raw 264.7 Cells Treated with Hominis Placenta Herbal-Acupuncture Solution (자하거(紫河車) 약침액(藥鍼液)이 Lipopolysaccharide로 처리된 RAW 264.7 대식세포주(大食細胞柱)의 유전자(遺傳子) 발현(發顯)에 미치는 영향(影響))

  • Jang, Hyun-Seok;Lee, Kyung-Min;Lim, Sung-Chul;Eom, Dong-Myung;Seo, Jung-Chul
    • Korean Journal of Oriental Medicine
    • /
    • v.12 no.3 s.18
    • /
    • pp.131-141
    • /
    • 2006
  • Hominis Placenta has a broad array of clinical applications in Korean medicine, including treatment of inflammatory conditions such as rheumatoid arthritis. The purpose of this study is to explore the global gene expression profiles in human RAW 264.7 cell lines treated with Hominis Placenta herbal-acupuncture solution (HPHAS) using microarray analysis. The RAW 264.7 cells were treated with lipopolysaccharide (LPS), HPHAS, or both. Of the 8,170 genes profiled in this study, with a cut-off level of two-fold change in the expression, 72 genes (CTD1, regulating synaptic membrane exocytosis 2, etc.) were upregulated and 135 genes(splicing factor, arginine/serine-rich 1, actinin, alpha 1, etc.) downregulated following LPS treatment. One gene (acrosin) was upregulated and 12 genes (phospholipase A2, group IB, neurofilament, heavy polypeptide 200kDa, etc.) were downregulated following HPHAS treatment. Eleven genes (RAB27A, member RAS oncogene family, eosinophil peroxidase, etc.) were upregulated and 16 genes (V-maf musculoaponeurotic fibrosarcoma oncogene homolog G (avian), RW1 protein, etc.) were downregulated following co-stimulation of HPHAS and LPS. It is thought that microarrays will play an ever-growing role in the advance of our understanding of the pharmacological actions of HPHAS in the treatment of arthritis. Further studies, however, are required to concretely prove the effectiveness of HPHAS.

  • PDF

Thermostable Xylanase from Marasmius sp.: Purification and Characterization

  • Ratanachomsri, Ukrit;Sriprang, Rutchadaporn;Sornlek, Warasirin;Buaban, Benchaporn;Champreda, Verawat;Tanapongpipat, Sutipa;Eurwilaichitr, Lily
    • BMB Reports
    • /
    • v.39 no.1
    • /
    • pp.105-110
    • /
    • 2006
  • We have screened 766 strains of fungi from the BIOTEC Culture Collection (BCC) for xylanases working in extreme pH and/or high temperature conditions, the so-called extreme xylanases. From a total number of 32 strains producing extreme xylanases, the strain BCC7928, identified by using the internal transcribed spacer (ITS) sequence of rRNA to be a Marasmius sp., was chosen for further characterization because of its high xylanolytic activity at temperature as high as $90^{\circ}C$. The crude enzyme possessed high thermostability and pH stability. Purification of this xylanase was carried out using an anion exchanger followed by hydrophobic interaction chromatography, yielding the enzyme with >90% homogeneity. The molecular mass of the enzyme was approximately 40 kDa. The purified enzyme retained broad working pH range of 4-8 and optimal temperature of $90^{\circ}C$. When using xylan from birchwood as substrate, it exhibits $K_m$ and $V_{max}$ values of $2.6{\pm}0.6\;mg/ml$ and $428{\pm}26\;U/mg$, respectively. The enzyme rapidly hydrolysed xylans from birchwood, beechwood, and exhibited lower activity on xylan from wheatbran, or celluloses from carboxymethylcellulose and Avicel. The purified enzyme was highly stable at temperature ranges from 50 to $70^{\circ}C$. It retained 84% of its maximal activity after incubation in standard buffer containing 1% xylan substrate at $70^{\circ}C$ for 3 h. This thermostable xylanase should therefore be useful for several industrial applications, such as agricultural, food and biofuel.

Purification and Characterization of a Cytochrome P-450 from Pravastatin-Producing Streptomyces sp. Y-110.

  • Park, Joo-Woong;Lee, Joo-Kyung;Kwon, Tae-Jong;Yi, Dong-Hee;Park, Yong-Il;Kang, Sang-Mo
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.1011-1017
    • /
    • 2001
  • Streptomyces sp. Y-110 cytochrome P-450, induced by the addition of compactin -Na into the culture medium, was purified from the cell extract to apparent homogeniety, mainly by DEAE-Sepharose, hydroxyapatite, and Mono Q column chromatyography. The sepcific activity of purified enzyme on its substrate, compactin-Na, was determined to be 15 nmol of pravastatin per mg protein. The molecular mass of this enzyme on SDS-PAGE was $37{\pm}0.5$ kDa, pI was 4.5, and its CO difference spectrum showed maximum absorption peaks at 452 and 550nm, respectively. The N-terminal amino acid sequence was determined to be Met>Thr>Cys>Thr>Pro>Val>Thr>Val>The>Gly>Ala>Ala>Gly>Gln>Ile>Gly>Tyr>Ala>Leu. Its apparent $K_m$ on compactin-Na was $1.294{\mu}M{\cdot}min^-1,\;and\;V_{max}\;was\;1.028{\mu}M{\cdot}min^-1$. The maximum substrate concentration ($K_s$) for reaction was $270 {\mu}M$and thus $1/[K_s]$ was $3.7{\mu}M$. These physicochemical characteristics and kinetic behavior of this enzyme were compared and shown to be different from those of Streptomyces cytochrome P-450 enzymes reported, suggesting that this enzyme may be an additional member of the Streptomyces cytochrome P-450 family.

  • PDF

Overexpression and Characterization of Vibrio mimicus Metalloprotease

  • Shin, Seung-Yeol;Lee, Jong-Hee;Huh, Sung-Hoi;Park, Young-Seo;Kim, Jin-Man;Kong, In-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.5
    • /
    • pp.612-619
    • /
    • 2000
  • To investigate the biochemical properties of V. mimicus metalloprotease, whose gene was isolated previously from Vibrio mimicus ATCC33653, overexpression and purification were attempted. The 1.9 kb of open reading frame was amplified by PCR from pVMC193 plasmid which ligated the VMC gene with pUC19 and introduced into Escherichia coli BL21 (DE3) using the overexpression vector, pET22b (+). The overexpressed metalloprotease (VMC) was purified with Ni-NTA column chromatography and characterized with various protease inhibitors, pHs, temperatures, and substrates. The purified VMC showed the proteolytic activity against gelatin, soluble and insoluble collagens, and synthetic peptides. Unlike the observations made with all metalloproteases originated from other Vibrio sp., the VMC did not hydrolyze the casein. The proteolytic activity was critically decreased when the VMC was treated with metal chelating reagents, such as EDTA, 2,2-bipyridine, and 1, 10-phenanthroline. In particular, the 71 kDa VMC exhibited the hemagglutinating activity against human erythrocyte. As the purified VMC was treated with $CuCl_2$ and $NiCl_2$ for the chemical modification of metal binding, the proteolytic activity and hemagglutinating activity were profoundly influenced. The multialignment analysis made on the reported Vibrio metalloproteases showed the difference of amino acid sequence similarity between the two distinctive classes of Vibrio metalloproteases.

  • PDF

GENETIC AND BIOCHEMICAL ANALYSIS OF A THERMOSTABLE CHITOSANASE FROM Bacillus sp. CK4

  • Yoon, Ho-Geun;Cho, Hong-Yon
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2000.04a
    • /
    • pp.157-167
    • /
    • 2000
  • A thermostable chitosanase gene from the isolated strain, Bacillus sp. CK4, was cloned, and its complete DNA sequence was determined. The thermostable chitosanase gene was composed of an 822-bp open reading frame which encodes a protein of 242 amino acids and a signal peptide corresponding to a 30 kDa enzyme in size. The deduced amino acid sequence of the chitosanase from Bacillus sp. CK4 exhibits 76.6%, 15.3%, and 14.2% similarities to those from Bacillus subtilis, Bacillus ehemensis, and Bacillus circulans, respectively. C-terminal homology analysis shows that Bacillus sp. CK4 belongs to the Cluster III group with Bacillus subtilis. The size of the gene was similar to that of a mesophile, Bacillus subtilis showing a higher preference for codons ending in G or C. The functional importance of a conserved region in a novel chitosanase from Bacillus sp. CK4 was investigated. Each of the three carboxylic amino acid residues were changed to E50D/Q, E62D/Q, and D66N/E by site-directed mutagenesis. The D66N/E mutants enzymes had remarkably decreased kinetic parameters such as $V_{max}$ and k$\sub$cat/, indicating that the Asp-66 residue was essential for catalysis. The thermostable chitosanase contains three cysteine residues at position 49, 72, and 211. Titration of the Cys residues with DTNB showed that none of them were involved in disulfide bond. The C49S and C72S mutant enzymes were as stable to thermal inactivation and denaturating agents as the wild-type enzyme. However the half-life of the C211S mutant enzyme was less than 60 min at 80$^{\circ}C$, while that of the wild type enzyme was about 90 min. Moreover, the residual activity of C211S was substantially decreased by 8 M urea, and fully lost catalytic activity by 40% ethanol. These results show that the substitution of Cys with Ser at position 211 seems to affect the conformational stability of the chitosanase.

  • PDF

Novel Alkali-Stable, Cellulase-Free Xylanase from Deep-Sea Kocuria sp. Mn22

  • Li, Chanjuan;Hong, Yuzhi;Shao, Zongze;Lin, Ling;Huang, Xiaoluo;Liu, Pengfu;Wu, Gaobing;Meng, Xin;Liu, Ziduo
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.873-880
    • /
    • 2009
  • A novel xylanase gene, Kxyn, was cloned from Kocuria sp. Mn22, a bacteria isolated from the deep sea of the east Pacific. Kxyn consists of 1,170 bp and encodes a protein of 390 amino acids that shows the highest identity (63%) with a xylanase from Thermohifida fusca YX. The mature protein with a molecular mass of approximately 40 kDa was expressed in Escherichia coli BL21 (DE3). The recombinant Kxyn displayed its maximum activity at $55^{\circ}C$ and at pH 8.5. The $K_m,\;V_{max}$, and $k_{cat}$ values of Kxyn for birchwood xylan were 5.4 mg/ml, $272{\mu}mol/min{\cdot}mg$, and 185.1/s, respectively. Kxyn hydrolyzed birchwood xylan to produce xylobiose and xylotriose as the predominant products. The activity of Kxyn was not affected by $Ca^{2+},\;Mg^{2+},\;Na^+,\;K^+$, ${\beta}$-mercaptoethanol, DTT, or SDS, but was strongly inhibited by $Hg^{2+},\;Cu^{2+},Zn^{2+}$, and $Pb^{2+}$. It was stable over a wide pH range, retaining more than 80% activity after overnight incubation at pH 7.5-12. Kxyn is a cellulase-free xylanase. Therefore, these properties make it a candidate for various industrial applications.

Molecular Orbital Theory on Cellulolytic Reactivity Between pNP-Cellooligosccharides and ${\beta}$-Glucosidase from Cellulomonas uda CS1-1

  • Yoon, Min-Ho;Nam, Yun-Kyu;Choi, Woo-Young;Sung, Nack-Do
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.11
    • /
    • pp.1789-1796
    • /
    • 2007
  • A ${\beta}$-glucosidase with the molecular mass of 160,000 Da was purified to homogeneity from cell extract of a cellulolytic bacterium, Cellulomonas uda CS1-1. The kinetic parameters ($K_m$ and $V_{max}$) of the enzyme were determined with pNP-cellooligosccharides (DP 1-5) and cellobiose. The molecular orbital theoretical studies on the cellulolytic reactivity between the pNP-cellooligosaccharides as substrate (S) molecules and the purified ${\beta}$-glucosidase (E) were conducted by applying the frontier molecular orbital (FMO) interaction theory. The results of the FMO interaction between E and S molecules verified that the first stage of the reaction was induced by exocyclic cleavage, which occurred in an electrophilic reaction based on a strong charge-controlled reaction between the highest occupied molecular orbital (HOMO) energy of the S molecule and the lowest occupied molecular orbital (LUMO) energy of the hydronium ion ($H_3O^+$), more than endocyclic cleavage, whereas a nucleophilic substitution reaction was induced by an orbital-controlled reaction between the LUMO energy of the oxonium ion ($SH^+$) protonated to the S molecule and the HOMO energy of the $H_2O_2$ molecule. A hypothetic reaction route was proposed with the experimental results in which the enzymatic acid-catalyst hydrolysis reaction of E and S molecules would be progressed via $SN_1$ and $SN_2$ reactions. In addition, the quantitative structure-activity relationships (QSARs) between these kinetic parameters showed that $K_m$ has a significant correlation with hydrophobicity (logP), and specific activity has with dipole moment, respectively.

Expression, Purification, Crystallization and Preliminary X-Ray Crystallographic Analysis of CnrX from Cupriavidus metallidurans CH34

  • Kim, Kook-Han;Jung, Eun-Jung;Im, Ha-Na;Lelie, Daniel Van Der;Kim, Eunice Eun-Kyeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.43-47
    • /
    • 2008
  • The nickel and cobalt resistance of Cupriavidus metallidurans CH34 is mediated by the CnrCBA efflux pump encoded by the cnrYHXCBAT metal resistance determinant. The products of the three genes cnrYXH transcriptionally regulate expression of cnr. CnrY and CnrX are membrane-bound proteins, probably functioning as anti-sigma factors, whereas CnrH is a cnr-specific extracytoplasmic functions (ECF) sigma factor. The periplasmic domain of CnrX (residues 29-148) was cloned as a N-terminal His-tagged protein, expressed in Escherichia coli, and purified using affinity chromatography and gel filtration. The molecular mass was estimated to be about 13.6kDa by size exclusion chromatography, corresponding to a monomer. The tetragonal bipyramid crystals were obtained by mixing an equal volume of protein in 50mM Tris-HCl, pH 7.5, 1% glycerol, 100mM NaCl, 1mM DTT, and the reservoir solution of 15% w/v PEG 2000, 100mM lithium chloride at 277K in 2-4 days using hanging drop vapor diffusion. The protein concentration was 24mg/ml. The crystal that diffracted to $2.42{\AA}$ resolution belongs to space group $P4_1\;or\;P4_3$ with unit cell parameters of $a=b=32.14{\AA},\;c=195.31{\AA},\;{\alpha}={\beta}={\gamma}=90^{\circ}$, with one molecule of CnrX in the asymmetric unit.

Cloning and Characterization of Ginsenoside Ra1-Hydrolyzing ${\beta}$-D-Xylosidase from Bifidobacterium breve K-110

  • Hyun, Yang-Jin;Kim, Bo-Mi;Kim, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.4
    • /
    • pp.535-540
    • /
    • 2012
  • ${\beta}$-D-Xylosidase (E.C. 3.2.1.37) from Bifidobacterium breve K-110, which hydrolyzes ginsenoside Ra1 to ginsenoside Rb2, was cloned and expressed in Escherichia coli. The ($His_6$)-tagged recombinant enzyme, designated as XlyBK-110, was efficiently purified using $Ni^{2+}$-affinity chromatography (109.9-fold, 84% yield). The molecular mass of XylBK-100 was found to be 55.7 kDa by SDS-PAGE. Its sequence revealed a 1,347 bp open reading frame (ORF) encoding a protein containing 448 amino acids, which showed 82% identity (DNA) to the previously reported glycosyl hydrolase family 30 of Bifidobacterium adolescentis ATCC 15703. The $K_m$ and $V_{max}$ values toward p-nitrophenyl-${\beta}$-D-xylopyranoside (pNPX) were 1.45mM and 10.75 ${\mu}mol/min/mg$, respectively. This enzyme had pH and temperature optima at 6.0 and $45^{\circ}C$, respectively. XylBK-110 acted to the greatest extent on xyloglucosyl kakkalide, followed by pNPX and ginsenoside Ra1, but did not act on p-nitrophenyl-${\alpha}$-L-arabinofuranoside, p-nitrophenyl-${\beta}$-D-glucopyranoside, or p-nitrophenyl-${\beta}$-D-fucopyranoside. In conclusion, this is the first report on the cloning and expression of ${\beta}$-D-xylosidase-hydrolyzing ginsenoside Ra1 and kakkalide from human intestinal microflora.